
BOUML

User Manual

1

BOUML
BOUML is a UML tool box allowing you to specify and generate code in C++, Java, Php, Python, MySQL and
IDL.

The main key points of BOUML are :

it is again a free software since the release 7.0

it runs under Linux, MacOS X and Windows

it allows to program simultaneously in C++, Java, Php, Python and IDL

thank to a full access to the generated forms, you are the master and you decide what must be generated

it is extensible, and the external tools (I name them plug-out because they are executed outside BOUML)
may be developed in C++ or Java, using BOUML for their definition as any other program (clearly I do not
like very much language like Visual Basic, and I do not understand how this one can be imposed in a UML
environment !)

it is fast and doesn't need a lot of memory to manage several thousands of classes, see benchmark

The initial reasons inciting me to develop BOUML was mainly : the pleasure to develop freely a tool and I hope
to see it used by many people (I already had this very pleasant experience with two friends for Xcoral), and
frankly a reaction to the very expensive price of the commercial UML tools.

Due to license violations, attacks and insults from people of wikipedia (the worst of them were the
administrators Bapti, Dereckson and Esby), I have decided to stop the free version of Bouml (the release 4.23
was the last free version of the first sequence), and to move to the non free version starting by the 5.0, upto the
6.12

Finaly end of May 2017 I decided to distribute again BOUML as a free software

The implementation of BOUML since the 5.0 is based on Qt version 4, while the previous versions of BOUML
was based on Qt 3 / 2.4.

The documentation is written with OpenOffice.org writer, many thanks for this powerful and pleasant office
suite. The screen copies are made with Ksnapshot and sometimes modified by Le Gimp to have burred areas,
thanks to the authors for these practical tools.

Some of the examples given in this documentation spoke about the organs, describing an organ is very easy for
me in French ... not in English ! I get the English translation of the words associated to the organs from a
Marya J. Fancey documentation, thanks to her.

License

Since the release 7.0 bouml/bouml.exe are free of use.

The releases of bouml/bouml.exe from the 5.0 up to the 6.12 was not free, to use them you needed to buy a
license, and to run them on a host at a date autorized by this license. I don't manage any more these versions.

The code generators/reverse/roundtrip more projectControl and projectSynchro are free of use.

The other plug-outs are free; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2, or (at your option) any later
version.

The code generated for the plug-outs is under the term of the GNU General Public License because it contains
the API sources. In the other cases the code generated by BOUML is usable without any restriction (i.e. no
license).

Copying and distribution of the documentation or a part of the documentation and screenshots is permitted in
any medium, provided a mention of Bouml or https://www.bouml.fr

The versions of bouml and associated tools older prior the 5.0 are free; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free Software Foundation; either
version 2, or (at your option) any later version. I don't manage any more these versions.

Copyright © 2004-2018 by Bruno Pagès.

2

BOUML is distributed on the Internet at http://www.bouml.fr/

Scope

This document describe BOUML, not the Unified Modeling Language.

Next : Starting

3

Starting
When you execute BOUML for the first time the environment dialog is shown, you must enter an own identifier
(Multi users considerations). The other information are optional, note you can specify a default screen in case
you have a multiple screen configuration, and a character set if you want to use non latin1 characters.

After this annoyance you may use BOUML, open an already created project, or create a new one.

The bouml window is composed of three parts :

4

The left sub-window display a browser presenting your project, the navigation may be done by the mouse
or the keyboard's arrows. The bold font is used when an item is modifiable, an item is read-only when you
do not have the write permission for the file(s) supporting it (see project files). The system items
supporting the plug-out's API (for instance UmlBaseActor) are also read-only.

The bottom-right sub-window is used to display/modify the comment associated to the current selected
item.

The top-right part is used to display/modify the diagrams, these ones may be maximized or minimized.

Project creation

A project creation is done through the entry new of the project menu.

When you create a new project, a file dialog appears (its aspect depend on the used system and window
manager) and you have to select the directory where the project will be placed and its name, for instance in
/tmp (probably just for a trial !) with the name foo.

In this case BOUML create the directory foo under /tmp, and place some files in /tmp/foo including foo.prj
which represents the project (see project files) :

Do not rename or delete the files produced by BOUML nor the directory itself !

Project loading

You may associate a .prj file to bouml using your window manager capabilities, call bouml through a command
line given the .prj file (see project files) in argument, or launch bouml then load a project using the project
menu or the open icon, or the historic (the historic is saved in the file .bouml placed on your home directory) :

5

Previous : bouml

Next : top level menus

6

Top level menus
The menus accessible from the BOUML's window are :

Project menu :

The Project menu allows to create a new project, load a project, save it in place or in a new location, print the
current diagram, close the project, or quit bouml. The bottom of the menu contains the historic, the upper line
correspond to last opened project, for instance the current one. When you try to close a modified project,
perhaps to load an other one, BOUML ask for a saving.

You can create a project from a template project if this one is defined through the environment dialog. The goal
is to get the settings from this project (probably empty) rather than to get the default settings I decide to set.
In this case, when you choose create from template the specified project is load and a save-as is automatically
done.

Windows menu :

The Windows menu allows to select an opened diagram or change the sub-windows disposition.

Tools menu :

7

The Tools menu allows to (re)open the trace window where the plug-outs write their messages, to apply a plug-
out on the project (independently of the browser item currently selected), to add/remove/modify the known
plug-outs list (see plug-out), or to import the plug-outs list defined in an other project.

Language menu :

The Languages menu allows to ask BOUML to produce or not a default definition/declaration (refer to the C++
generation, C generation, Java generation, Php generation, Python generation and Idl generation) when a
browser item is created, and to select for which language(s) the dialogs shown through tabs. The languages
C++ and C are exclusive. This menu also allows to update or not the body of the operation during the code
generation (refer to the C++ generation, Java generation, Python generation and Php generation), to produce
or not the operation's profile when you edit an operation's body through an external editor (refer to operation
edition).

Miscellaneous menu :

8

The Miscellaneous menu allows to show/hide the stereotypes in the browser, to ask for to have or not an auto
completion/search in the lists of choices in the dialogs, to change the used style, to change the size of the font,
to set the default diagram format, to show/hide a grid in the diagrams, to edit the shortcuts, to a specify a root
directory for the icons associated to the stereotypes or directly put indiagrams and to set some environment
information.

Note that sometimes changing the size of the base font does nothing because the desired font is not available. I
had introduced this feature mainly because the default size under Linux and Windows is not the same, this may
change the relative position of the objects and a relation drawn vertically with one font will be inclined with an
other. Nevertheless because the fonts under Linux and Windows are not strictly the same, a diagram can't have
the same aspect under the two operating systems. This size is memorized in the file memorizing the project,
but BOUML allows to change the font size even when the file is read only (the new font size can't be saved).
This worst with MacOS X using 72 dpi while Linux and Windows use 96 dpi, to avoid problem when using
BOUML under different platforms the dpi value is saved, it is set when you create a project depending on the
current platform, and to change it may disturb a lot your diagrams.

Shortcut edition

When you select Edit shortcuts a dialog appears :

9

A shortcut is a key and the optional modifiers shift, control and alt. Under MacOS X control is replaced by the
apple () and alt is named option on the old keyboards.

This first tab allows to define shortcuts to apply a command on the selected element(s). The available
commands are proposed on a mouse click in the column command, their correspond to the menu entries. In the
previous picture you see the default shortcuts.

The second tab allows to define shortcuts to apply a plug-out :

A plug-out is specified by its display specified through the plug-out editor. The available plug-outs are proposed
on a mouse click in the column tool display.

As usual the last column do allows to copy/past/cut/insert line and applies on the line where you did the mouse
click.

Environment settings

10

You can't change you own identifier while a project is load, this means to change it start the modeler with
loading a given project.

Under Windows one setup installs Bouml with the manual and the other without. I recommend to use the setup
installing the documentation each time the documentation is updated, and it is placed under the directory doc.
In the other cases the documentation may depend on how the packaging is made for your distribution, but in
all the cases you can directly extract the archive to install the HTML documentation then indicate where it is.

To specify a translation file allows to use a language different than the English for the menus and dialogs, for
instance fr.lang allows to use the modeler in French. Note : when you change the language some global menus
are unchanged and the description of buttons of already opened diagram too, to follow the new language for all
exist then restart the modeler. If you choose a language needing a non latin-1 character set you also have to
specify the right character set. If you are volunteer to add a new translation prevent me and I will send you the
small tool I made for that and how to do, remark I do not deny that it is quite laborious to translate more that
2000 sentences.

Icons bar

These buttons allow to :

open a project

save the current project

print the active diagram, a first menu appears to choose the printer or print in a file ans set properties,
then a second dialog ask you to print the diagram on 1, 4 or 9 pages

search for an elements through their names or stereotypes and may be kins, or to search for a string in
the declarations/definitions or operation bodies :

navigate in the historic of the last selected elements in the browser

11

Previous : starting

Next : browser items

12

Browser items

13

All the browser items may have a description, a stereotype (sometime without special meaning for BOUML, the
default stereotypes may be defined for some types of item, and there are modeled stereotypes defined in
profiles and simple stereotypes beign only a text), and user properties. The browser item's stereotype may be
showed/hidden through the Miscellaneous menu.

The bold font is used when an item is modifiable, an item is read-only when you do not have the write
permission for the file(s) supporting it (see Project files). The system items supporting of the plug-out's API (for
instance UmlBaseClass) are also read-only, this help you to not modify them to have a chance to remain
compatible with the future versions.

In Bouml there are 4 special types of containers, call views. Views can exist at many levels. These are used to

14

provide structure and organization for diagrams and model elements. The sample browser items figure at the
top of this page show the kinds of diagrams and model elements that can be put in each type of view. The
context sensitive menus lets the user create only those diagrams and model elements appropriate to the
particular type of view.

When you create a new item, this last is placed at the end of the items of the same container, using the left
button of the mouse as for a drag&drop it is possible to move an item to place it in an other container (except
for the relations) or to change the items order. The drag & drop from the browser to an opened diagram is also
possible when it is legal. When you drag an item it1 on a non-container item it2, it1 will be placed just after it2
at the same level. When you drag an item it1 on a container item it2 which may contain it1, it1 will be the first
it2's children, in case it1 may be moved in it2 or after it2, Bouml ask you to choose.

Multiple selection is not allowed in the browser using the classical way, I consider that it is to simple to loose a
multiple selection through a wrong mouse click. I replace classical multiple selection with the possibility to
mark browser items through the menu appearing on a right mouse click, or through a control left mouse click.
Marked items are written on a red background, and may be moved or duplicated (under condition) :

On the example above at the menu appearing on the use case view propose to mark it, to move the marked
items into it, to move the marked items after it (in this case only the order of the items is modified) or to
duplicate the marked items into it. The menu is context dependent, for a marked item it proposes to unmark
the item, or to unmark all the marked items, and for instance for a component view it just proposes to mark it
because the two marked diagrams cannot be placed into the component view or after (the marked diagrams
cannot be placed into the package containing the component view).

When you remove an item from the model, the icon contains a red cross (for instance), note that a deleted
item is never saved when you save your project, but it may be undeleted with or without its children until you
close the project. Sometimes it is not possible to delete an items because this one contains read-only items or is
referenced by a read-only relation.

The icons in the browser can be changed by using stereotypes defined in profiles, in some case these icons can
also be used in the diagrams.

A double mouse click on an item allows to edit it except when the item have an associated diagram, in this case
the diagram is showed. The other mouse buttons show a menu depending on the item kind.

control s is a shortcut to save the project

control shift s is a shortcut to save the project in a new one

control os is a shortcut to open a project

control d and suppr are a shortcut to delete the selected item

 Package

15

A Package (may be the project itself) is first something like a directory and may contain :

packages

use case views

class views

component views

deployment views

relations

A package may indicate where the code must be produced by the generator for each language, and may specify
the C++ and Php namespace / Java package / Idl module. A generator producing code for an artifact looks at
the package containing the deployment view where is the artifact to get these information.

A package stereotyped profile is used to define a profile.

Refer to package and profile for more information.

 Use case view

A use case view may contain :

sub use case view

use cases

classes, an actor is just a class having the stereotype actor

class instances

states

activities

use case diagrams

object diagrams

sequence diagrams

collaboration diagrams

Refer to use case view for more information.

 Class view

A class view is used to design the classes and may contain :

classes

class instances

states

activities

class diagrams

object diagrams

sequence diagrams

collaboration diagrams

Refer to class view for more information.

 Component view

A component view may contains :

16

components

component diagrams

Refer to component view for more information.

 Deployment view

A deployment view may contains :

nodes

artifact

deployment diagrams

Refer to deployment view for more information.

 Use case

A use case is ... a use case, but also a browser container and may contain :

use cases

actors

classes

class instances

states

activities

relations

use case diagrams

object diagrams

sequence diagrams

collaboration diagrams

Refer to use case for more information.

 Class

A class is the support to define a class (!), an interface, an enum, an union, a struct, an exception, or a
valuetype, or a table, depending on the language. The stereotype specify what a class is, the way a stereotype
is translated for each language may be specified through the generation settings

A class stereotyped stereotype define a stereotype in a profile.

A class may contain :

(nested) classes

relations / foreign key

attributes / columns / keys

operations

ports

parts/roles

class composite diagrams

extra members

The order of the class's sub-items is very important because it is followed by the C++/Java/Idl generators.

17

Refer to class and profile for more information.

 Relation

They are two kinds of relation : the relations between classes whose are considered by the source code
generators, and the relations between the other items (inheritance and dependency)

To add a relation you have to use a diagram (obviously the relation drawing may be deleted just after !), it is
not possible to add a relation through the browser. It is also not possible to move a relation out of the items
containing it.

The icon in the browser indicate if a relation between classes is public (+), protected (#) or private (-). The
protected visibility is translated in private in Idl.

A bi-directional relation between classes is supported by two items in the browser.

Generally the stereotype of a relation between classes is used to specify how a relation with a multiplicity
different than 1 is translated in each language (refer to default stereotype and generation settings), for
instance to produce a vector. The friend stereotype is a special case for a dependency and is used to produce a
C++ friend declaration. Between classes stereotyped table representing MySQL tables a relation support a
foreign key.

Refer to relation for more information.

 Attribute

There is not restriction for the attributes, an attribute's type may be a class or an int for instance. In a MySQL
table an attribute support a column or a (non foreign) key

The icon in the browser indicate if the attribute is public (+), protected (#) or private (-). The protected
visibility is translated in private in Idl.

Refer to attribute for more information.

 Operation

The icon in the browser indicate if the operation is public (+), protected (#) or private (-). The protected
visibility is translated in private in Idl.

Refer to operation for more information.

 Port

Under a class there are true ports, under a role/part or a role/part instance there are reference to a port
defined under a class.

A reference to a port may contain :

connectors

Refer to port for more information.

Part Role

Under a class there are true part/role, under a instance of a class they are role/part instance.

Part/role and part/role instances may contain :

connectors

Refer to part/role for more information.

 Extra member

An extra member is an alien allowing you to specify directly the generated code for each language. This allows
to manage non UML items, for instance C++ pre-processor directives, Java attribute initializations etc ...

Refer to extra member for more information.

 Class instance

18

A modeled class instance, a sequence diagram , object diagram or collaboration diagram may contain modeled
class instances and graphical classes instances (out of the model).

A class instance may contain :

parts/roles

object composite diagrams

Refer to class instance for more information.

 State

A state represents a state machine, a sub machine, a composite state or a simple state

A state may contains :

state diagrams

sub-states

regions

pseudo states

transitions

actions

receive signals (an action with the stereotype receive-signal)

send signals (an action with the stereotype send-signal)

Refer to state and for more information.

Pseudo State

A pseudo state may be :

 final state (for reasons of simplification)

 initial

 deep history

 shallow history

 join

 fork

 junction

 choice

 entry point

 exit point

 terminate

A pseudo state may contains :

transitions

Refer to pseudo state for more information.

 Activity

An activity may contains:

activity diagrams

19

 parameters

activity nodes

activity partitions

expansion and interruptible activity regions

Refer to activity for more information.

 Expansion region

An expansion region may contains :

expansion and interruptible activity sub regions

 expansion nodes

control nodes

action nodes

object nodes

Refer to region for more information

 Interruptible activity region

An interruptible activity region may contains :

expansion and interruptible activity sub regions

control nodes

action nodes

object nodes

Refer to region for more information

Activity node

An activity node may be :

activity action (opaque, accept event, accept timer event, read variable value, clear variable
value, write variable value, add variable value, remove variable value, call behavior, call operation,
send object, send signal, broadcast signal, unmarshall or value specification)

object nodes

control nodes (initial, final, flow final, merge, decision, fork, join)

Activity nodes may contain :

flow

 pins (action only)

Refer to activity action, object node and control node for more information.

 Component

A component is an autonomous unit with well defined interfaces that is replaceable within its environment.

A component may contains :

relations

components

Refer to component for more information.

20

 Artifact

Artifacts are basically used to produce source file(s) when the stereotype is source, or to specified how libraries
or an executable are composed.

A source artifact is (potentially) associated to classes, but you may directly give its source(s) contain for
instance to define the C++ main function. A database artifact is (potentially) associated to classes stereotyped
table. The other artifacts may be associated to artifacts.

Note : In the very old release of BOUML (up to the 1.5.1), the behavior of the artifact was defined at the
component level.

An artifact may contains :

relations

Refer to artifact for more information.

 Node

To specify how the deployment is made, a node may represent a CPU, a device etc ...

Refer to node for more information.

 Use case diagram

Refer to use case diagram for more information.

 Sequence diagram

Refer to sequence diagram for more information.

 Collaboration diagram

Refer to collaboration diagram for more information.

 Class diagram

Refer to class diagram for more information.

 Class Composite diagram

Refer to class composite diagram for more information.

 Activity diagram

Refer to activity diagram for more information

 State diagram

Refer to state diagram for more information

 Object diagram

Refer to object diagram for more information

 Object Composite diagram

Refer to object composite diagram for more information.

 Component diagram

Refer to component diagram for more information.

 Deployment diagram

Refer to deployment diagram for more information.

21

Previous : top level menus

Next : package

22

Package
A Package is first something like a directory and may contain other packages, use case views, class views,
component views and deployment views, and dependencies, in any order :

A package allows also to indicate where the code must be produced by the generator for each language, and to
specify the C++ and Php namespace / Java package / Python package / Idl module. A generator producing code
for a component looks at the package containing the component view where is the component to get these
information.

The project is in fact the top level package.

The packages stereotyped profile define a profile, refer to the chapter profile.

The relation between packages are dependencies and inheritances. Because here the inheritance is very soft, A
inherits on B when A contains a class inheriting an other one defined in B, BOUML accept that circular
inheritances.

Menus

The project and package menus appearing with a right mouse click on their representation in the browser are
something like this, supposing them not read-only nor deleted :

project menu

(non project) package menu

Menu : import project

23

import project allows to import a BOUML project into the current package as a standard package with its
contain. Note that the imported project's default settings are not imported. It is not possible to import a project
formated by a release of BOUML less than 1.3, then to import an older project you have to reformat it. To do
this, load the project to import with a release greater or equal to 1.3, edit the project package, hit Ok (BOUML
doesn't check if something is really modified) then save the project.

Menu : import project as library

Allows to import a project as a library. A project imported as a library can't be modified in the importing
project, but it can be updated to follow changes done in the imported project. In case the project imported as
library contains others projects imported as library this ones are not considered like that, this means you can't
update these sub projects separately but you have to ask for to update the container project you directly
imported. This feature is dedicated to use projects defining libraries, not to work at several on the same
project, for that see Project control and Project synchro

Menu : Update imported library

To update a project imported as a library to take into account all the changes done since the last update ot the
initial importation. To simplify management you can't update a project imported as library while the project is
modified, this means you have to save first your project or to reload it to forget changes you don't want, and at
the end of the update the project is saved, so you can't undo an update.

Menu : edit

edit allows to show/modify the project/packages properties with the following dialog (here Php is not selected
in the top level menu Languages, so its tab is not visible) :

The project's name cannot be changed through this dialog, use save as in the project menu.

The stereotype of the project and packages doesn't have a special meaning for BOUML.

The editor button visible above and associated here to the description, allows to edit the description in an other
window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note that
this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

The C++, Java, Php, Python and Idl tabs (visible only i these languages are all set in the Languages menu)
allow to specify the directory where the generation are made and the namespace/package/module :

24

When a directory specification is empty, the generation is made in the directory specified through the last tab
of the generation settings dialog. As it is mentioned in the dialogs, in case a root directory is specified through
the generation settings dialog, the directory specifications in the three dialogs above may be relative, the
directory(ies) used by the code generators will be the root directory collapsed with the appropriate relative
directory. This allows to move all the generated files changing only one path.

When a namespace/java package/python package/module specification is empty, the generated code will not be
placed in a namespace/package/module (!), else you have to specify the full namespace/package/module
specification : this allows to have a browser's package tree different than the namespaces/packages/modules
imbrication.

25

For instance in case the C++ namespace is mynamespace, the generated code will be placed in the namespace
mynamespace (!). In case the C++ namespace is mynamespace::subnamespace::subsubnamespace, the
generated code will be placed in the namespace subsubnamespace itself nested in the namespace
subnamespace itself nested in the namespace mynamespace. In Java and Python the separator is a “.” rather
than “::”. In Idl the separator is “::”.

Menu : edit default stereotypes

This entry is only available in the project's menu. Allows to set a default stereotypes list for some kinds of
object, the dialog's tab associated to the packages is :

As you can see, it is possible to set a default stereotypes list for the packages and the dependency relation
starting from a package. In the lists the stereotypes must be separated by a space.

The stereotypes import and from are specially known by the Python generator and allow to add import and
from .. import * forms.

Menu : edit class settings

As you can see, this setting allows to set a default visibility at the UML level for the attributes, relations and
operations. This setting may be redefined in nested packages and class views. At the project level you have to
choose between public, protected and private, elsewhere you may also choose default, this means that the
visibility of the upper level is followed (which itself may be default etc ... up to the project level). When you
create a new package or class view the visibilities are set to default.

Menu : edit generation settings

The biggest menu in BOUML, used to specify a default definition/declaration for all the generated forms. This
entry is only available in the project's menu, for the package point of view the associated dialog's tab is the last
one named Directory :

26

This one allows to specify a root directory where the generations will be made, this the possibility to change it
at each package level as it was previously said. This root directory may be relative to the project. The browse
buttons call a file browser.

Menu : edit reverse/roundtrip settings

To specify through regular expression the files and / or directories whose must not be taken into account
during a reverse and roundtrip, for instance to bypass test programs :

Menu : edit drawing settings

27

28

29

This dialog allows to specify how the diagrams must be drawn by default, at the package level you may specify
all the drawing settings because a package may contain indirectly all the kinds of diagram. Except at project
level you may choose default for each value, in this case the effective value if specified in the upper level
(which itself may specify default etc ... up to the project level).

Refer to drawing for the settings concerning the packages.

Menu : edit default geometries

To specify the default geometry to use for the dependencies, inheritances, other associations, flow and
transitions in the diagrams :

The default geometry is followed when you create the relation / flow / transition or because it is automatically
added in a diagram because draw all relation is set. To change the default geometries doesn't affect the already
drawn relations / flows / transitions. The default geometries are global to the project.

Menu : import

Allows to import the generation settings (except the specification of the base directories) or the default
stereotypes from an other project.

Menu : delete

The delete entry is only present when the package is not read-only. Note that this entry is proposed even the
package cannot be deleted because a children at any sub-level is read-only or referenced by a read-only
relation, these cases are checked when you ask for the deletion for performance purpose (else the menu may
take too many time to appears).

Delete the package and all its children, and all the representation of them in the opened diagrams. After that it
is possible to undelete them (from the browser) until you close the project : obviously the deleted items are not
saved !

Menu : referenced by

To know who are the packages referencing the current one class through a relation.

Menu : mark

30

See mark

Menu : lock / unlock sub classes and artifacts

It is possible to put a lock on a class or an artifact. A locked element cannot be modified editing it nor
roundtriped, and there is no code generation for it. When you put/unput a lock on a class it is also put/unput on
its sub classes and on the associated artifact and all the other classes associated to this artifact and their sub
classes. When you put/unput a lock on an artifact it is also put/unput on the associated classes and their sub
classes. It is also possible to put/unput locks recursively from a package, a class view and a deployment view.

Menu : generate

To generate the C++/Java/Idl code of all the sub-items. To generate C++/Java/Idl code for all the project, do it
at the project level or through the Tools menu. Note that the generators does not re-write a file when it is not
necessary, to not change the last modification date of the files for nothing, make will appreciate !

Refer to C++ generator, Java generator, Php generator, Python generator and Idl generator for more details.

Menu : reverse

To reverse sources placing the result into the current package.

Refer to C++ reverse, Java reverse, Java catalog , Php reverse and Python reverse for more details.

Menu : tools

The menu entry tool is only present in case at least a plug-out may be applied on the project/package.

Drawing

When a package is drawn in a diagram, the available options are :

package name in tab : to indicate if the package's name must be written in the tab which is the small
rectangle on the top :

show classes and packages context : to indicate if the context where the package is defined must be
written, it is not the case just above. The context may be the “UML context” which is the path of the
package in the browser (choice followed for awt below), or the C++ / Php namespace specified by the
package, or the Java package specified by the package (choice followed for picture below), or the Python
package specified by the package or at least the Idl module :

show stereotype properties : to indicate through a note the (non empty) value of the stereotype properties
in case the package is stereotyped by a stereotype part of a profile. By default the stereotype properties
are hidden.

package color : when you create a new project, the packages are transparent by default.

In all the diagrams, a package may be resized.

If the package is stereotyped by a stereotype part of a profile and this stereotype has an associated icon, this
icon will be used unchanged when the scale is 100% else it is resized.

When you move a package in a diagram, the artifacts, classes, components, deployment nodes, sub-packages
and use cases defined in the package (not through an other one) and in collision with the package at the
beginning of the move are also moved. If you want to also move the connected elements, do a very short move
(for instance use the keyboard arrows to do a move and its opposite) then ask for select linked items and

31

restart the move. Note : contrarilly to the states when you resize a package the sub-elements are not moved to
stay in it.

A right mouse click on a package in a diagram calls the following menu :

the add related elements menu allows to add elements having a relation with the current element, the
following dialog is shown :

The drawing settings concerns only the picture for which the menu is called.

set associated diagram allows to automatically open the current diagram when a double mouse click is made on
the package representation in a diagram or the browser. After that the only way to edit the package is to
choose the edit entry in the menu.

Previous : browser items

Next : use case views

32

Use case view
A use case view may contain other use case views, use cases, actors, classes, class instances, activities, state
machines, use case diagrams, object diagrams, sequence diagrams, collaboration diagrams and class diagrams
in any order :

Menus

The menu appearing with a right mouse click on a use case view in the browser is something like this,
supposing it is not read-only nor deleted :

Menu : edit

edit allows to show/modify the use case view properties with the following dialog :

The stereotype of a use case view doesn't have a special meaning for BOUML.

The editor button visible above and associated here to the description, allows to edit the description in an other
window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note that
this external editor have to create an own window, its parameter is the pathname of the file containing the

33

description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Menu : edit drawing settings

34

35

This dialog allows to specify how the sub diagrams must be drawn by default.

Menu : delete

The delete entry is only present when the package is not read-only.

Delete the use case view and all its children, and all the representation of them in the opened diagrams. After
that it is possible to undelete them (from the browser) until you close the project : obviously the deleted items
are not saved !

Menu : mark

See mark

Menu : tools

The menu entry tool not present above is present in case at least a plug-out may be applied on the use case

36

view.

Previous : package

Next : class view

37

Class view
A class view is used to design the classes and may contain classes, class instances, states, activities, class
diagrams, object diagrams, sequence diagrams and collaboration diagrams in any order :

A class view may have an associated deployment view, in this case the menu of the sub-classes propose a
shortcut to create an artifact in the associated deployment view (refer to class menu).

Menus

The menu appearing with a right mouse click on a class view in the browser is something like this, supposing it
is not read-only nor deleted :

The menu entry select associated deployment view is only present when the class view has an associated
deployment view, this feature allows to quickly associate an artifact to a class (see class menu). The menu entry
new stereotype is only present when the class view is placed inside a profile.

Menu : edit

The stereotype of a class view doesn't have a special meaning for BOUML.

38

As you can see, the association with a deployment view is made through this menu.

The editor button visible above and associated here to the description, allows to edit the description in an other
window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note that
this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Menu : edit class settings

This setting allows to set a default visibility at the UML level for the attributes, relations and operations of the
classes defined in the class view. default means that the visibility of the upper level is followed (which itself
may be default etc ... up to the project level). When you create a new class view the visibilities are set to
default.

Menu : edit drawing settings

39

40

This dialog allows to specify how the class view's diagrams must be drawn by default.

Menu : delete

The menu entry delete is only present when the class view is not read-only.

Delete the class view and all its children, and all the representation of them in the opened diagrams. After that
it is possible to undelete them (from the browser) until you close the project : obviously the deleted items are
not saved !

Menu : mark

See mark

Menu : lock / unlock sub classes and artifacts

It is possible to put a lock on a class or an artifact. A locked element cannot be modified editing it nor
roundtriped, and there is no code generation for it. When you put/unput a lock on a class it is also put/unput on
its sub classes and on the associated artifact and all the other classes associated to this artifact and their sub
classes. When you put/unput a lock on an artifact it is also put/unput on the associated classes and their sub
classes. It is also possible to put/unput locks recursively from a package, a class view and a deployment view.

Menu : generate

To generate the C++/Java/Idl code of all the sub-items. Refer to C++ generator, Java generator and Idl
generator for more details.

Menu : tools

The menu entry tool is present in case at least a plug-out may be applied on the class view.

Menu : select associated deployment view

Only present when the class view has an associated deployment view, select it as you do this manually, except
that you do not have to search it !

Previous : use case view

Next : component view

41

Component view
A component view may contains components and component diagrams in any order :

Menus

The menu appearing with a right mouse click on a component view in the browser is something like this,
supposing it is not read-only nor deleted :

Menu : edit

The stereotype of a component view doesn't have a special meaning for BOUML.

The editor button visible above and associated here to the description, allows to edit the description in an other
window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note that
this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Menu : edit drawing settings

42

This dialog allows to specify how the component diagrams must be drawn by default.

Menu : delete

The menu entry delete is only present when the class view is not read-only.

Delete the component view and all its children, and all the representation of them in the opened diagrams.
After that it is possible to undelete them (from the browser) until you close the project : obviously the deleted
items are not saved !

Menu : mark

See mark

Menu : tools

The menu entry tool not present above is present in case at least a plug-out may be applied on the component
view.

Previous : class view

Next : deployment view

43

Deployment view
A deployment view may contains nodes, artifacts and deployment diagrams in any order :

Menus

The menu appearing with a right mouse click on a deployment view in the browser is something like this,
supposing it is not read-only nor deleted :

Menu : edit

The stereotype of a deployment view doesn't have a special meaning for BOUML.

The editor button visible above and associated here to the description, allows to edit the description in an other
window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note that
this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Menu : edit drawing settings

44

This dialog allows to specify how the deployment diagrams must be drawn by default.

Menu : delete

The menu entry delete is only present when the class view is not read-only.

Delete the deployment view and all its children, and all the representation of them in the opened diagrams.
After that it is possible to undelete them (from the browser) until you close the project : obviously the deleted
items are not saved !

Menu : mark

See mark

Menu : lock / unlock sub classes and artifacts

It is possible to put a lock on a class or an artifact. A locked element cannot be modified editing it nor
roundtriped, and there is no code generation for it. When you put/unput a lock on a class it is also put/unput on
its sub classes and on the associated artifact and all the other classes associated to this artifact and their sub
classes. When you put/unput a lock on an artifact it is also put/unput on the associated classes and their sub
classes. It is also possible to put/unput locks recursively from a package, a class view and a deployment view.

Menu : tools

The menu entry tool not present above is present in case at least a plug-out may be applied on the component
view. The selected tool is called and applied on the current deployment view.

Previous : component view

Next : use case

45

Use case
In the browser, an use case may contain other use cases, actors (classes stereotyped actor), classes, class
instances, state machine, activities, use case diagrams, sequence diagrams, collaboration diagrams, object
diagrams, class diagrams, and the relations, in any order :

Define a use case nested in an other one in the browser is a practical way when a use case is refined into sub
use cases.

The relations between use cases presented in the browser are the inheritance and dependency.

Menus

The menu appearing with a right mouse click on a use case in the browser are something like this, supposing it
is not read-only nor deleted :

Menu : edit

edit allows to show/modify the use case properties with the following dialog :

46

The stereotype of a use cases doesn't have a special meaning for BOUML.

The editor button visible above and associated here to the description, allows to edit the description in an other
window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note that
this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Menu : edit drawing settings

47

48

This dialog allows to specify how the sub diagrams must be drawn by default.

Refer to drawing, for the settings concerning the use cases.

Menu : delete

The delete entry is only present when the use case is not read-only.

Delete the use case and all its children, and all the representation of them in the opened diagrams. After that it
is possible to undelete them (from the browser) until you close the project : obviously the deleted items are not
saved !

Menu : referenced by

To know who reference the use case through a dependency or an inheritance, show a dialog, for instance :

Menu : mark

See mark

Menu : tools

The menu entry tool is only present in case at least a plug-out may be applied on the use case. The selected tool
is called and applied on the current use case.

Default stereotypes

The dialog allowing to set the default stereotypes has a tab reserved for the use cases :

49

UML propose a simple line for the relation between use cases and actors/classes. I propose also an arrow
because I prefer this representation.

Drawing

A use case is drawn in a diagram with a sizable ellipse, the available options are :

use case color

automatic label position : this concerns the relation's labels, by default BOUML automatically move the
labels associated to a relation accordingly to its extremities. If you do not like how BOUML place the
labels, set this option to false and you will be the master (note that the labels default position entry of the
relation's menus in the diagrams remains available to help you when you are lost).

A right mouse click on a use case in a diagram calls the following menu :

the add related elements menu allows to add elements having a relation with the current element, the
following dialog is shown :

50

The drawing settings concerns only the picture for which the menu is called.

select linked items select all the items connected with the current one through any line

set associated diagram allows to automatically open the current diagram when a double mouse click is made on
the use case representation in a diagram or the browser. After that the only way to edit the use case is to
choose the edit entry in the menu.

A right mouse click on the name of a use case containing at least one space proposes you to set an expected
maximal width (in number of characters). The name is written on several lines if needed and cut on space(s) to
try to respect the expected maximal width.

Previous : deployment view

Next : class

51

Class
A class may contain nested classes, relations, attributes, operations, roles/parts, ports, composite diagrams,
extra members and dependencies on packages. The order of the class's sub-items is very important because it
is followed by the C++/Java/Php/python/Idl/MySQL generators.

The representation of a class in the browser indicates if the class is abstract or is a template class, furthermore
a nested class icon has a reduced size :

A class is the support to define all kinds of class depending on the languages, the stereotype specify what a
class is. The way a stereotype is translated for each language is configured and is specified through the
generation settings. You can set a default list of stereotypes for the classes and their relations through the edit
default stereotype entry of the project's menu.

Some stereotypes have a special meaning for BOUML :

typedef : a class having this stereotype may have an associated base type used to construct the typedef. It
is not possible to add a relation/attribute/operation to a class stereotyped typedef, nor to define it as a
template (but it may instantiate a template). This stereotype doesn't have sense in Java nor in php or
Python

template_typedef : a class having this stereotype generates a template typedef in C++ and a typedef in
IDL. The specialized/base class is specified through a generalization/realization. This stereotype doesn't
have sense in Java nor in php or Python

enum : a class having this stereotype is an enum, need at least the JDK 5 in Java. Because a Java JDK 5
enum may have attributes, relations and operations, it is possible to add these kinds of members to a class
having the stereotype enum, but their default definitions are empty in C++ and Idl. it is not possible to
define or instantiate a template,they are not yet managed in Java. In Php an enum produces a class having
only const variables

enum_class : a class having this stereotype produces an enum class in C++, except that the behavior is
similar to the stereotype enum.

enum_pattern : a class having this stereotype is an enum even in Java for which a special definition
compatible with JDK release less than 5 is produced. it is not possible to add a relation/operation to a class
stereotyped enum nor to define or instantiate a template.

union : a class having this stereotype cannot instantiate a template

table : a MySQL table

actor, boundary : just to change the representation, not relevant for the code generators

interface : also change the representation, but relevant for the code generator depending on the target
language

52

stereotype : indicate the class support a stereotype part of a profile, refer to the chapter describing the
profiles.

metaclass : indicate the class is a meta class, refer to the chapter describing the profiles.

Obviously because you may change the stereotype at any time, it is possible to define for instance a class with
an operation and after that to change its stereotype to enum_pattern ... In this case BOUML does nothing, for
instance it does not delete itself the operation to help you to come back to a more appropriate stereotype
without undesirable modifications.

The extend of the previous stereotypes include C++ and Java and Idl and Python and Php both. This means for
instance that you cannot add an operation to an enum_pattern independently of the translation of this
stereotype in C++/Java/Php/Python/Idl specified through the generation settings. But it is also possible to have
stereotypes with an extend limited to each language through the definition of new stereotypes. For instance, if
you define the stereotype eiu which is translated by enum in C++, interface in Java, class in Php and Python
and union in IDL through the generation settings, you will have exactly that you want : magic ! isn't it ?

The stereotypes known at each language level by BOUML are :

C++ : class (or empty stereotype), enum, enum class, struct, typedef, template typedef and union

Java : class (or empty stereotype), enum, enum_pattern, interface and @interface

Php : class (or empty stereotype), enum, interface, trait

Python : class (or empty stereotype), enum (produce also a class)

Idl : enum, exception, interface, struct, typedef, union and valuetype

MySQL : table

The class's properties will be exposed below.

Menus

The class menu appearing with a right mouse click on its representation in the browser depend on the
stereotype and the artifact association, it is something like these, supposing the class not read-only nor deleted
(see also menu in a diagram) :

Menu : add ...

53

The first entries of the menu allowing to add something may not be present depending of the class's stereotype.

Menu : edit

edit allows to show/modify the class properties. In case the class is read-only, the fields of the dialog are also
read-only. Note that for consistency purpose you cannot edit a class while any other edition is made, and while
a class is edited all the other editions are impossible.

Class dialog, tab Uml

The tab Uml is a global tab, independent of the language except some information hidden when the stereotype
of he class is table :

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it.

abstract allows to declare that the class is an abstract class (not instanciable).

active allows to indicate that the class is active, active classes have a special representation

The artifact used to produce the class source code must be chosen in the proposed list or the field may be
empty. Obviously a nested class can't have an associated artifact, but a nested class has a visibility.

The description will be generated in the class source code (in case the ${comment} or ${description} macro
appears in the class definition) as a comment.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

The default button visible above associated to the description allows to set the description with a default
contain specified through the generation settings. Useful to generate comments compatible Java Doc or
Doxygen for instance.

Class dialog, tab Parametrized

The parametrized tab allows to specify the formals of a template / generic class or a template typedef. It is not
active when the stereotype of the class is table.

For instance with :

54

if the class have the default proposed class definition, the C++ class definition (named Dict) is :

template<class V, class K = string> class Dict ...

As usual the last column do allows to copy/past/cut/insert line and applies on the line where you did the mouse
click.

Class dialog, tab Instantiate

The instantiate tab allows to specify the actual of a class inheriting templates classes or a template typedef. It
appears only when the edited class inherits or realizes at least a template class. Obviously, a template class
may inherit another ones. It is not active when the stereotype of the class is table.

For instance with this definition of Dict :

if the class have the default proposed class definition, the C++ class definition of theredheaded is :

class theredheaded : public Dict<string, string> ...

the Java class definition is :

class theredheaded extends Dict<String, String> ...

When the class theredheaded is edited only the actuals are editable in the tab Instantiate, both for C++ and
Java.

Supposing you have a template class vector and you want to define a vector or boolean as a class, obviously the
right definition is not :

class vectorOfBoolean : public vector<bool> {...}

but :

template<> class vector<bool> {...}

55

To do this you just have to define the class named vector<bool>

However the right way in C++11 is to use a template typedef

As usual the last column do allows to copy/past/cut/insert line and applies on the line where you did the mouse
click.

Class dialog, tab C++

This tab allows to give the C++ definition of the class, it is visible only when C++ is set through the Languages
menu and the stereotype of the class is not table.

Template definition :

Template instantiation (of course a class may be both a template definition and a template instantiation) :

Template typedef (setting the stereotype of theredheaded to be template_typedef) :

Enum (class with the stereotype enum or enum_pattern) :

56

Enum class :

Standard class :

In BOUML the generated code is obtained by the substitution of macros in a text, only the Declaration part is
editable, the other one help you to see what will be generated for C++ (supposing you do not modify the C++
code generator !).

When you push the button default declaration, the form specified through the generation settings depending
on the class stereotype (and of course the language !) is proposed, this last may be modified as you want, even
to produce illegal source code. For instance if you do not want to follow the inheritance specified by the class's
relations, you just have to replace ${inherit} by anything you want.

When you do not want to have this class defined in C++ (but it must be defined in Java or Idl, so the class must
have an associated artifact), empties the declaration manually or using the button not generated in C++ (an
other way is to empty the C++ definition of the artifact).

57

The external check box must be used when the class must not be defined in C++ by BOUML, but you want to
specify the name of the class (to not follow the Uml/Java/Idl name) and/or the included files and/or using forms
or any other forms needed to use it.

${template} produce a template declaration in case the class is a template class, else an empty string.

${members} produce the declaration and definition of the class members (relations, attributes, operations and
extra members) following the browser order and repartition in the header and source files.

${inline} produce the definition of the operations and extra members declared inline, may be an empty string.

Refer to the generation settings for more details.

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Class dialog, tab Java

This tab allows to give the Java definition of the class, it is visible only when Java is set through the Languages
menu and the stereotype of the class is not table

Generic definition :

Generic instantiation :

For a JDK 5 enum (class with the stereotype enum) :

58

For a class with the Java stereotype enum_pattern :

Standard class :

59

${public} produce an empty string when the check box public is not checked, else produce public (!)

${final} produce an empty string when the check box final is not checked, else produce final (!!)

The external check box must be used when the class must not be defined in Java by BOUML, but you want to
specify the name of the class (to not follow the Uml/C++/Idl name).

${members} produce the declaration of the class members (relations, attributes, operations and extra
members) following the browser order, doesn't produce the enumeration items of an enum. In an enum, an
attribute is not an enumeration item when its stereotype is attribute.

${items} produces the enumeration items of an enum. an attribute is an enumeration item when its stereotype
is not attribute.

${extend} is replaced by the class inheritance

${implement} is replaced by the interface inheritance

${@} produces the annotations, when it is present in the definition the button Edit annotation is active, a
specific dialog allows you to enter the annotations proposing the default annotations (Deprecated ...) and the
ones defined through the classes stereotyped @interface :

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Class dialog, tab Php

This tab allows to give the Php definition of the class, it is visible only when Php is set through the Languages
menu and the stereotype of the class is not table

For an enum (class with the stereotype enum) :

60

Standard class :

${final} produce an empty string when the check box final is not checked, else produce final (!!)

${abstract} produce an empty string when the check box abstract is not checked, else produce abstract (!!)

The external check box must be used when the class must not be defined in Php by BOUML, but you want to
specify the name of the class (to not follow the Uml/C++/Php/Python/Idl name). An optional second line may be
given to specify the require_once form to produce in artifact containing classes referencing this external class.

${members} produce the declaration of the class members (relations, attributes, operations and extra
members) following the browser order. It also produces the forms use from the generalizations to trait.

${items} produces the enumeration items of an enum. other members are not produced

${extend} is replaced by the class inheritance except from trait

${implement} is replaced by the interface inheritance except from trait

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Class dialog, tab Python

This tab allows to give the Php definition of the class, it is visible only when Php is set through the Languages
menu and the stereotype of the class is not table

For an enum (class with the stereotype enum), recall the instance attributes are produced in the operation
__init__ :

61

Standard class :

The Python 2.2 check box allows to ask for classes introduced by Python 2.2, the default value of this toggle is
the one specified by the generation settings

The external check box must be used when the class must not be defined in Python by BOUML, but you want
to specify the name of the class (to not follow the Uml/C++/Php/Python/Idl name) on the first line (${name} by
default), may be followed by import forms whose will be produced by the code generator.

${members} produce the declaration of the class members (relations, attributes, operations, extra members
and sub classes) following the browser order. Note that the instance attributes are produced at the beginning
of the body of the operation __init__.

${inherit} is replaced by the inheritance, a class without inheritance inherits of object if the toggle Python 2.2
is set

${docstring} is replaced by the description of the class placed between ””” and followed by a newline. If the
description is empty nothing is produced. You can replace it by ${comment} or ${description} if you prefer.

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Class dialog, tab Idl

This tab allows to give the Idl definition of the class, it is visible only when Idl is set through the Languages
menu and the stereotype of the class is not table

62

${local} produce an empty string when the check box local is not checked, else produce local (!!), this one is
only available when the stereotype of the class is interface in Idl (see generation settings).

${custom} produce an empty string when the check box custom is not checked, else produce custom (!),
custom is available when the stereotype of the class is valuetype in Idl (see generation settings).

The external check box must be used when the class must not be defined in Idl by BOUML, but you want to
specify the name of the class (to not follow the Uml/C++/Java name) and/or the included files needed to use it.
Not yet implemented in the Idl generator.

${members} produce the declaration of the class members (relations, attributes, operations and extra
members) following the browser order.

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Class dialog, tab MySQL

This tab allows to give the MySQL definition of the table, it is visible only when MySQL is set through the
Languages menu and the stereotype of the class is table

${definition} produce the declaration of the class members (relations supporting the foreign keys and
attributes supporting the other keys and columns) following the browser order.

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Menu : duplicate

The menu entry duplicate clone the class and all its children, including the nested classes.

The self relations (a self relation is a relation between a class and itself) are specially managed : they became a

63

self relation to the clone.

For instance, if the initial situation is the following :

After the duplication of C1 into the new class C3 :

Note that the duplication of the relation c1 of C3::SC is still a relation to C1, because only the self relation are
specially managed, not all the relation to the duplicated class (the context of the inner class(es) SC is visible
thanks to the drawing setting “show context” and also to the inner class relation).

Menu : create source artifact

The menu entry create source artifact is present when the class (not stereotyped table) does not have an
associated artifact, but the class view containing the class have an associated deployment view. Choosing this
entry a new artifact having the name of the current class and the stereotype source is created in the
deployment view associated to the class view containing the current class.

To quickly create if needed the associated deployment view and associate an artifact to all the classes of a class
view use the plug-out deploy.

Menu : create database artifact

The menu entry create database artifact is present when the class is stereotyped table does not have an
associated artifact, but the class view containing the class have an associated deployment view. Choosing this
entry a new artifact having the name of the current class and the stereotype database is created in the
deployment view associated to the class view containing the current class.

64

To quickly create if needed the associated deployment view and associate an artifact to all the classes of a class
view use the plug-out deploy.

Menu : select associated artifact
Menu : select associated database

This menu entry is present when the class have an associated artifact, to quickly select this one, the current
class may also be quickly selected from its associated artifact.

Menu : select associated component
Menu : select an associated component

This menu entry is present when the class have an associated component(s), to quickly select this one, the
current class may also be quickly selected from its associated component.

Menu : referenced by

To know who reference the current class

Menu : mark

See mark

Menu : lock / unlock

It is possible to put a lock on a class or an artifact. A locked element cannot be modified editing it nor
roundtriped, and there is no code generation for it. When you put/unput a lock on a class it is also put/unput on
its sub classes and on the associated artifact and all the other classes associated to this artifact and their sub
classes. When you put/unput a lock on an artifact it is also put/unput on the associated classes and their sub
classes. It is also possible to put/unput locks recursively from a package, a class view and a deployment view.

Menu : delete

The menu entry delete is only present when the class is not read-only.

Delete the class and all its children, and all the representation of them in the opened diagrams. After that it is
possible to undelete them (from the browser) until you close the project : obviously the deleted items are not
saved !

Menu : generate

To generate source code for the languages for whose the class and the associated artifact have a definition.

Menu : tool

The menu entry tool is only present in case at least a plug-out may be applied on a class. The selected tool is
called and applied on the current class.

Default stereotypes

The dialog allowing to set the default stereotypes has a tab reserved for the classes :

65

As you can see, it is possible to set a default stereotypes list for the classes and all the relations between
classes.

The code generators does not distinguish the generalization and the realization, even they do not have the
same meaning in UML.

Generation settings

This very important dialog allows to specify many default definitions concerning the classes, more details will
be given in C++ generator, Java generator, Php generator, Python generator, Idl generator and MySql
generator.

The tabs associated to a given language are only visible when the corresponding language is set through the
Languages menu.

The tab Stereotypes allows to specify how the class's stereotypes are translated in each language (except
MySQL) :

66

The second C++ tab allows to define the default C++ class definition depending on the stereotype :

The first Java tab allows to define the default Java class definition depending on the stereotype :

67

The first Php tab allows to define the default Php class definition depending on the stereotype :

The first Python tab allows to define the default Python class definition depending on the stereotype, and to use
Python 2.2 classes or not by default :

68

The first Idl tab allows to define the default Idl class definition depending on the stereotype :

The MySQL tab allows to define the default MySQL class definition (stereotyped table) :

69

The tab Description allows to set a default description (the default description is used when you hit the button
default in the description part of a class of the class dialog) :

Drawing

A class is drawn in a diagram as a rectangle or an icon depending on the class's stereotype and the drawing
settings :

If the class is stereotyped by a stereotype part of a profile and this stereotype has an associated icon, this icon
will be used when the drawing mode is natural, the image is unchanged when the scale is 100% else it is
resized.

70

There are lot of drawing settings to allow you to decide what must be shown or not and how. Here an example
where the attribute and operation compartments are hidden and the composite structure is shown, the class
use an horizontal gradient to color it contrarilly to the parts :

A right mouse click on a class in a diagram calls the following menu (supposing the class editable) :

Menu : add related elements

To add elements having a relation with the current element, the following dialog is shown :

Menu : hide composite diagram

Only present when the class already show one of its composite diagram.

Menu : show composite diagram

Only present when the class has at least a composite diagram. When you show a composite diagram into the
class representation this one is duplicated except the fragments (a priori is used to indicate whose class is
described) and nothing appends if you delete the original composite diagram or change it. Use this entry to
update the composite diagram in the class or change it by an other.

Menu : show nesting relation

Only present when the class is nested and its container class present but the nesting relation is not shown
because draw all relation is set to false, allows to show the nesting relation.

Menu : edit drawing settings

71

These drawing settings concerns only the picture for which the menu is called.

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level. When you add a class in a diagram,
all the settings are set to default.

drawing language :

Allows to choose how the operations and attributes of the class must be written in case show full members
definition is true (at the class level or an upper level), this may hide an operation or an attribute when it is not
defined for the chosen language.

For instance, the class C has the attribute a having the type uchar (supposed translated unsigned char in C++,
char in Java and octet in Idl), the operation op returning an uchar and having the input parameter p having the
type uchar and only in Idl a second out parameter p2 of the same type. The C picture is, depending on the
drawing language :

drawing mode :

Allows to draw the class using a rectangle or an icon :

class : to draw a rectangle whatever the stereotype of the class

control : to draw the control icon whatever the stereotype of the class

72

boundary : to draw the boundary icon whatever the stereotype of the class

entity : to draw the entity icon whatever the stereotype of the class

actor : to an actor whatever the stereotype of the class

natural : the draw the class depending on its the stereotype

show context :

To indicate if the context where the class is defined must be written, and if yes, how. The context may be the
"UML context" which is the path of the class in the browser, or the C++ or Php namespace, or the Java
package or at least the Idl module. In case the class has an associated artifact, the namespace/package/module
is the one specified by the package containing the artifact, else by the package containing the class itself.
Obviously nothing is written in case the namespace/package/module is not specified.

For instance, the package Package2 specify the C++ / Php namespace nsp, the Java package jpck, the python
package ppck and the Idl module mdl. The C picture is, depending on the show context :

UML C++ / Php
namespace

Java package Python
package

Idl module

hide attributes :

To hide or not the attributes, it is also possible to specify the visibility for each one.

hide operations :

To hide or not the operations, it is also possible to specify the visibility for each one.

hide get/set operations :

To hide or not the 'official' getter and setter operations

hide ports :

To hide or not the ports.

show full members definition :

To write all the attribute/operation definitions, or just their names. See also drawing language.

In case of a MySQL table when this option is set the keys are also show in the class :

without the option :

with the option :

show members visibility :

To write or not the visibility

73

show members stereotype :

To write or not the stereotype

show context in members definition :

to write or not the context of classes indicated in the full member definitions

show attributes multiplicity :

To write or not the multiplicity of the attributes when the drawing language is UML and you ask to show for full
members definition, in case of a MySQL table this writes the size

show attributes initialization :

To write or not the default value of the attributes/columns when you ask to show for full members definition

show attributes modifiers :

To write or not the modifiers when you ask to show for full members definition, except for the / indicating the
attribute is derived which is written even you don't ask for the full members definition

member max width :

To limit the width (in characters) used to produce the definition of the operations and attributes. When the
width is greater that the max width, the string is cut and ... is added. Doesn't take into account the stereotype.

show parameter direction :

To write or not the direction of the operation's parameters

show parameter name :

To write or not the name of the operation's parameters

show information note :

To show or not the constraints as a note. This note is able to contain the constraints of the class itself, the
constraints of its members and the inherited constraints. To choose which constraint must be written, edit the
node and a dedicated dialog will appears :

show stereotype properties :

to indicate through a note the (non empty) value of the stereotype properties in case the class is stereotyped by
a stereotype part of a profile. By default the stereotype properties are hidden.

class color :

To specify the fill color. Note you can also specify a gradient at the diagram level or an upper level, the gradient

74

can be done in diagonal, horizontal or vertical :

Menu : custom drawing settings :

To save the drawing settings used for the class through the sub menu entry save as, or to apply an already
saved custom drawing setting to the class or selected classes from the proposed list in the sub menu.

Menu : individual attribute visibility :

To specify the hidden / written attributes of the class through the following dialog :

If you set specify visible members rather than hidden ones, when you will add new attributes these ones will
not be added in the class picture.

Menu : individual operation visibility :

To specify the hidden / written operations of the class through the following dialog :

If you set specify visible members rather than hidden ones, when you will add new operations these ones will
not be added in the class picture.

Menu : set associated diagram

set associated diagram allows to automatically open the current diagram when a double mouse click is made on
the class representation in a diagram or the browser. After that the only way to edit the class is to choose the
edit entry in the menu.

Menu tools :

Appears only when at least one plug-out is associated to the classes. To apply a plug-out on the class.

75

Previous : use case

Next : relation

76

Relation
We consider in this chapter only the relations between classes. To add a relation to a class you have to use a
class diagram (obviously the diagram or the relation drawing may be deleted just after !), it is not possible to
add a relation through the browser. It is also not possible to move a relation into an other class or elsewhere.

The icon in the browser indicates if the relation is public (+), protected (#), private (-) or package (~). The
protected and package visibilities are translated in private in Idl. The package visibility is translated in private
in C++, and doesn't produce a visibility in Php (use this case to produce Php 4 code). A class relation is
underlined.

A bi-directional relation is supported by two relation items in the browser.

A relation have a name, a stereotype, may have one or two roles and multiplicity (one by direction). Note that it
is not possible to specify a stereotype for each direction of a bi directional relation, frankly I avow that the main
reason is to simplify as it is possible the drawing of the relations in the diagrams with the associated labels.

In the browser are written the name of the relations (by default its kind) between parenthesis, the role(s) of the
associations and aggregations, the end class of the generalization, realization and dependency. The stereotype
may be may be showed/hidden through the Miscellaneous menu. The name of a relation is not used by the code
generators.

Generally the relation's stereotype is used to specify how a relation with a multiplicity different than 1 is
translated in each language, for instance to produce a vector. The friend stereotype is a special case for a
dependency and is used to produce a C++ friend declaration.

There are several kinds of relation :

generalization : to produce an inheritance, or a form use in Php when the inherited class is a trait

realization : produce also an inheritance, the code generators do not distinguish a realization and a
generalization except for Php trait.

dependency : only the dependency having the stereotype friend are considered by the C++ code
generator.

unidirectional association : to define a directional relation, the code generators will produce an attribute
having the role name. In C++ the default generated code use pointer(s).

directional aggregation : to define a directional relation, the code generators do not distinguish
association and aggregation.

directional composition (directional aggregation by value) : to define a directional composition, the code
generators will produce an attribute having the role name. In C++ the default generated code does not
use pointer(s).

association : to define a bi-directional relation, the code generators will produce two attributes whose
names are the roles's name.

aggregation : to define a bi-directional aggregation, the code generators will produce two attributes
whose names are the roles's name. This kind of relation may considered to be a shortcut to define two
(directional) aggregations.

77

composition (aggregation by value) : to define a bi-directional composition, the code generators will
produce two attributes whose names are the roles's name. This kind of relation may considered to be a
shortcut to define two (directional) aggregations by value.

By default, the example above produce the following codes (the visibility may be replaced by var to be
compatible with Php 4) :

C++ Java Php Idl

class C : public C3 {
protected:
C * dir_a;
C * dir_b;
C2 * theC2;

};

class C2 {
protected:
C * theC;
C2 a;

friend class C3;
};

class C extends C3 {
protected C dir_a;
protected C dir_b;
protected C2 theC2;

}

class C2 {
protected C theC;
protected C2 a;

}

class C extends C3 {
protected $dir_a;
protected $dir_b;
protected $theC2;

}

class C2 {
protected $theC;
protected $a;

}

valuetype C : C3 {
private C dir_a;
private C dir_b;
private C2 theC2;

};

valuetype C2 {
private C theC;
private C2 a;

};

The multiplicity and stereotype may be used to produce the appropriate code with a natural and intuitive way.
For instance the C's relation theC2 with the stereotype vector and multiplicity * will produce (depending on the
generation settings) :

C++ Java Idl

vector<C2 *> theC2; protected Vector theC2; private sequence<C2> theC2;

With the stereotype vector and the multiplicity 12, the C's relation theC2 will produce (depending on the
generation settings) :

C++ Java Idl

C2 * theC2[12]; protected C2[] theC2; private sequence<C2,12> theC2;

Refer to the C++ Generator, Java generator, Php Generator, Python Generator and Idl generator for additional
information.

A unidirectional relation between classes stereotyped table defines a foreign key for MySQL. Refer to the
MySql generator for additional information.

Menus

The relation menu appearing with a right mouse click on its representation in the browser is something like
these, supposing it is not read-only nor deleted (see also menu in a diagram) :

78

Menu : edit

edit allows to show/modify the relations properties. In case the relation is read-only, the fields of the dialog are
also read-only.

Relation dialog, tab Uml

The tab Uml is a global tab, independent of the language (except the special case of a foreign key) :

Here the two roles are editable because the relation is bi-directional, and because it is an association or
aggregation.

The default name of a relation is its kind between < and >, for instance <association>, the default name does
not appears in a diagram.

It is possible to change the kind of the relation through the combo box type, but it is not possible to reverse a
relation, the role A is always attached to the start class used to draw the relation, and the role B is only
available when the relation is bi-directional.

The proposed stereotypes are the default ones specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it. The
stereotype and the multiplicity are used both (may be with the stereotype of the class(es) in Idl) to compute the
default declaration.

Association allows to define a class association, to produce it in the generated code use the keyword

79

${association}

By default, the names of the generated attributes are the role names.

The multiplicity is used to compute the default declaration and the generated code for each language, the
proposed ones are not the alone know by the code generators, you may also use a number or a number
between [] (they are not distinguished by BOUML) to specify a vector, or a sequence or numbers each between
[] to specify a multi dimensioned array.

The initial value give the default value of the generated attribute(s), in C++ it is taken into account only when
the relation is a class relation (static). By default the generated form is exactly the one you give, this means
that you have to give the '=' when it must be generated, this allows to give the arguments of a constructor.

The visibility may be chosen with the radio buttons, the relations have a default visibility set through the class
settings :

By default the description is used to produce comments by the code generators.

The editor button visible above and associated here to the description and initial value, allows to edit the
description or initial value in an other window, or to call an external editor (for instance Xcoral) specified
through the environment dialog. Note that this external editor have to create an own window, its parameter is
the pathname of the file containing the description, its execution is done in parallel with BOUML which looks
each second at the file contents to get the new definition until the dialog is closed (I do not like very much this
polling but this works even QT isn't compiled with the thread support).

The default button visible above associated to the description allows to set the description with a default
contain specified through the generation settings. Useful to generate comments compatible Java Doc or
Doxygen for instance.

When the relation is a a unidirectional relation defined between two classes stereotyped table the number of
information is limited :

80

Relation dialog, tab C++

This tab allows to give the C++ definition of the relation, it is visible only when C++ is set through the
Languages menu and it is not a relation between two classes stereotyped table

For an association or an aggregation without multiplicity :

for a generalization, realization or a dependency :

81

In BOUML the generated code is obtained by the substitution of macros in a text, only the Declaration part is
editable, the other one help you to see what will be generated for C++ (supposing you do not modify the C++
code generator !).

When you push the button default declaration, the form specified through the generation settings depending
on the stereotype and multiplicity (and of course the language !) is proposed, this last may be modified as you
want, even to produce illegal source code.

When you do not want to have this relation defined in C++, empties the declaration manually or using the
button not generated in C++.

It is possible to follow the visibility as it is set in the UML Tab or to change it.

${static} produce an empty string when the relation is not an class relation (see the UML tab), else produce
static

${const} produce an empty string when the relation is not read only (see the UML tab), else produce const or
constexpr when the check box constexpr is checked

${type} is replaced by the class pointed by the relation (see the UML tab)

${name} is replaced by the relation's role name (see the UML tab)

${inverse_name} is replaced by the name of the inverse role (see the UML tab)

${stereotype} is replaced by the stereotype translated in C++ (first tab of the generation setting dialog)

${multiplicity} is replaced by the multiplicity (see the UML tab)

${value} is replaced in the source file by the initial value of the relation (see the UML tab)

${h_value} is replaced in the header file by the initial value of the relation (see the UML tab)

${thread_local} produce an empty string when the check box thread_local is not checked, else produce
thread_local

${mutable} produce an empty string when the check box mutable is not checked, else produce mutable

${volatile} produce an empty string when the check box volatile is not checked (see the UML tab), else
produce volatile

82

${association} produce the association (may be the class forming a class-association with the relation)

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

When the check box virtual is checked the inheritance is virtual.

Refer to the generation settings and the C++ Generator for more details and explanation of the other
keywords.

Relation dialog, tab Java

This tab allows to give the Java definition of the relation, it is visible only when Java is set through the
Languages menu and it is not a relation between two classes stereotyped table

For an association or an aggregation without multiplicity :

In BOUML the generated code is obtained by the substitution of macros in a text, only the Declaration part is
editable, the other one help you to see what will be generated for Java (supposing you do not modify the Java
code generator !).

When you push the button default declaration, the form specified through the generation settings depending
on the stereotype and multiplicity (and of course the language !) is proposed, this last may be modified as you
want, even to produce illegal source code.

When you do not want to have this relation defined in Java, empties the declaration manually or using the
button not generated in Java.

It is possible to follow the visibility as it is set in the UML Tab or to change it replacing ${visibility} by the
desired one.

${static} produce an empty string when the relation is not an class relation (see the UML tab), else produce
static

${final} produce an empty string when the relation is not read only (see the UML tab), else produce final

${volatile} produce an empty string when the check box volatile is not checked (see the UML tab), else
produce volatile

${transient} produce an empty string when check box transient is not checked, else produce transient

83

${type} is replaced by the class pointed by the relation (see the UML tab)

${stereotype} is replaced by the stereotype translated in Java (first tab of the generation setting dialog)

${multiplicity} is replaced by the multiplicity, a form [123] become [], (see the UML tab)

${name} is replaced by the relation's role name (see the UML tab)

${inverse_name} is replaced by the name of the inverse role (see the UML tab)

${value} is replaced by the initial value of the relation (see the UML tab)

${association} produce the association (may be the class forming a class-association with the relation)

${@} produces the annotations, when it is present in the definition the button Edit annotation is active, a
specific dialog allows you to enter the annotations proposing the default annotations (Deprecated ...) and the
ones defined through the classes stereotyped @interface :

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Refer to the generation settings and Java generator for more details and explanation of the other keywords.

Relation dialog, tab Php

This tab allows to give the Php definition of the relation, it is visible only when Php is set through the
Languages menu and it is not a relation between two classes stereotyped table

For an association or an aggregation :

84

In BOUML the generated code is obtained by the substitution of macros in a text, only the Declaration part is
editable, the other one help you to see what will be generated for Php (supposing you do not modify the Php
code generator !).

When you push the button default declaration, the form specified through the generation settings depending
on the stereotype and multiplicity (and of course the language !) is proposed, this last may be modified as you
want, even to produce illegal source code.

When you do not want to have this relation defined in Php, empties the declaration manually or using the
button not generated in Php.

It is possible to follow the visibility as it is set in the UML Tab or to change it replacing ${visibility} by the
desired one, to not generate the visibility set it to package

${static} produce an empty string when the relation is not an class relation (see the UML tab), else produce
static

${const} produce an empty string when the relation is not read only (see the UML tab), else produce const

${var} produce var when the relation is not read only nor static(see the UML tab) and the visibility is not
package, else produce an empty string

${name} is replaced by the relation's role name (see the UML tab)

${inverse_name} is replaced by the name of the inverse role (see the UML tab)

${value} is replaced by the initial value of the relation (see the UML tab)

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Refer to the generation settings and Php generator for more details and explanation of the other keywords.

For a dependency :

For the artifact associated to the class A, a dependency stereotyped use from A to the class B and having a
definition containing ${type} in Php produces use B; (B may be prefixed by its package like for any other
reference of B in the generated code) through the keyword ${use} of the artifact.

For the artifact associated to the class A, a dependency stereotyped use-as XYZ from A to the class B and

85

having a definition containing ${type} in Php produces use B as XYZ; (B may be prefixed by its package
like for any other reference of B in the generated code) through the keyword ${use} of the artifact.

For the artifact associated to the class A, a dependency without a stereotype or not stereotyped use nor
use-as ... from A to the class B and having a non empty definition in Php produces a form require_once to
the artifact of the class B through the keyword ${require_once} of the artifact.

In case of a generalization the default definition is ${type} producing the name of the inherited class with
namespace is needed. If the inherited class is a trait the default definition produces two spaces followed by the
form use, if you want an other indent or to generate an other form may be using several traits at the same time
(when the definition finishes by a comma a new line is not generated at the end of the definition) and/or having
insteadof or as you have to enter by yourself the expected definition.

Relation dialog, tab Python and it is not a relation between two classes stereotyped table

This tab allows to give the Python definition of the relation, it is visible only when Python is set through the
Languages menu

For an association or an aggregation without multiplicity or having the multiplicity 1:

In BOUML the generated code is obtained by the substitution of macros in a text, only the Declaration part is
editable, the other one help you to see what will be generated for Java (supposing you do not modify the Java
code generator !).

When you push the button default declaration, the form specified through the generation settings depending
on the stereotype and multiplicity (and of course the language !) is proposed, this last may be modified as you
want, even to produce illegal source code.

When you do not want to have this relation defined in Java, empties the declaration manually or using the
button not generated in Python.

The instance relations are automatically produced at the beginning of the body of the operation __init__ (this
operation is produced for each class even when you don't define it). The static relation are produced inside the
class definition.

${comment} produces a comment from the UML description, adding a # at the beginning or each line,
following the current indent. A newline is produced if needed at the end to not have something else generated
on the same line after the comment.

86

${description} is like for ${comment} but without adding #.

${self} inside the operation __init__ this produces the name of the first parameter followed by a dot, else
nothing.

${type} produces the type of the relation, it is used by default when the relation is a composition to create an
instance of this type, can also be used in a comment for a form @var

${multiplicity} produces the multiplicity of the relation, probably used inside a comment

${stereotype} is replaced by the translation in Python of the relation's stereotype (see the UML tab)

${name} is replaced by the role name (see the UML tab)

${inverse_name} is replaced by the name of the inverse role (see the UML tab)

${value} is replaced by the initial value of the relation (see UML tab) if it is not empty, else None

${association} produce the association (may be the class forming a class-association with the relation)

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Refer to the generation settings and Python generator for more details and explanation of the other keywords.

Relation dialog, tab Idl

This tab allows to give the Idl definition of the relation, it is visible only when Idl is set through the Languages
menu and it is not a relation between two classes stereotyped table

For an association or an aggregation without multiplicity :

In BOUML the generated code is obtained by the substitution of macros in a text, only the Declaration part is
editable, the other one help you to see what will be generated for Idl (supposing you do not modify the Idl code
generator !).

When you push the button default declaration, the form specified through the generation settings depending
on the stereotype of the class, the stereotype and multiplicity of the relation (and of course the language !) is

87

proposed, this last may be modified as you want, even to produce illegal source code.

When you do not want to have this relation defined in Idl, empties the declaration manually or using the button
not generated in Idl

It is possible to follow the visibility as it is set in the UML Tab or to change it replacing ${visibility} by the
desired one.

${type} is replaced by the class pointed by the relation (see the UML tab)

${name} is replaced by the relation's role name (see the UML tab)

${inverse_name} is replaced by the name of the inverse role (see the UML tab)

The check box truncatable is available when the relation is an attribute or a generalization or a realization,
and allows to produce the Idl keyword truncatable.

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Refer to the generation settings and Idl generator for more details and explanation of the other keywords.

Relation dialog, tab MySQL

This tab allows to give the MySQL definition of the relation, it is visible only when MySQL is set through the
Languages menu and it is a unidirectional relation between two classes stereotyped table

This define a foreign key.

88

In BOUML the generated code is obtained by the substitution of macros in a text, only the Declaration part is
editable, the other one help you to see what will be generated for MySQL.

When you push the button default declaration, the form specified through the generation settings is
proposed, this last may be modified as you want, even to produce illegal source code.

When you do not want to have this relation defined in MySQL, empties the declaration manually or using the
button not generated in MySQL

${constraint} is replaced by the constraint

${modifier} is not managed here, it is relevant only for the non foreign keys

${name} is replaced by the attribute's name (see the UML tab)

${type} is not managed here, it is relevant only for the non foreign keys

${columns} is replaced by the columns of the key, they are set through the tab key columns

${ref} is replaced by the keywork REFERENCES then columns associated to the referenced key, then if
specified the stereotype after the keyword MATCH, then by the optional delete / update actions

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Refer to the generation settings and MySQL generator for more details.

Menu : duplicate

The menu entry duplicate clone the relation in the two directions when the relation is bi-directional. The name
of the role(s) is empty in the new relation(s).

Menu : add ...

These entries allow to produce get and set operations on the relation, contrarily to the similar operations made
by hand, these two ones are linked to the associated relation to be updated, or deleted when the relations is
deleted. The default name of the operations and their characteristics are set through the generation settings.

By default, the get and set operations generated for the C's relation theC2 are :

C++ Java Php

inline const C2 * C::get_theC2() const {

return theC2;

}

public final C2 get_theC2() {

return theC2;

}

final public function getTheC2()

{

return $this->theC2;

89

void C::set_theC2(C2 * value) {

theC2 = value;
}

public void set_theC2(C2 value) {

theC2 = value;
}

}

public function setTheC2($value)

{

 $this->theC2 = $value;
}

Python Idl

def getTheC2(self):

return self.theC2

def setTheC2(self, value):

self.theC2 = value

C2 get_theC2();

void set_theC2(C2 value);

Menu : delete

The menu entry delete is only present when the relation is not read-only.

Delete the relation, associated get and set operations when they exist, and all the representation of them in the
opened diagrams. After that it is possible to undelete them (from the browser) until you close the project :
obviously the deleted items are not saved !

Menu : mark

See mark

Default stereotypes

The dialog allowing to set the default stereotypes has a tab reserved for the relations :

As you can see it is possible to specify a default stereotypes list for each kind of relation. Associated to a
multiplicity the stereotype is used by the code generators to produce the desired forms, the translation in each
language of the UML stereotype is specified through the generation settings.

Generation settings

This very important dialog allows to specify many default definitions concerning the relations, more details will
be given in C++ generator, Java generator, Python generator, Php generator, Idl generator and MySQL

90

generator.

The tab Stereotypes allows to specify how the relation's stereotypes are translated in each language except
Php, Python and MySQL :

As usual the last column do allows to copy/past/cut/insert line and applies on the line where you did the mouse
click.

The third C++ tab allows to specify the default C++ generated code for the relations :

The fourth C++ tab allows to specify the get and set operations specificities in C++ :

91

The form in from of also in uml allows to specify the name of the operation in C++, the same rule is followed in
UML if also in uml is set.

The second Java tab allows to specify the default Java generated code for the relations in Java :

The third Java tab allows to specify the get and set operations specificities in Java :

92

The form in from of also in uml allows to specify the name of the operation in Java, the same rule is followed in
UML if also in uml is set.

The second Php tab allows to specify the default Php generated code for the relations and to specify the get
and set operations specificities in Php :

The form in from of also in uml allows to specify the name of the operation in Php, the same rule is followed in
UML if also in uml is set.

The second Python tab allows to specify the default Python generated code for the relations and to specify the
get and set operations specificities in Python :

93

The form in from of also in uml allows to specify the name of the operation in Python, the same rule is followed
in UML if also in uml is set.

The third Idl tab allows to specify the default Idl generated code for the relations :

The fourth Idl tab allows to specify the get and set operations specificities in Idl :

94

The form in from of also in uml allows to specify the name of the operation in Idl, the same rule is followed in
UML if also in uml is set.

The MySQL tab allows to specify the default MySQL generated code for the relations :

The same default definition is used for the non foreign keys.

Drawing

A relation is drawn in a diagram with a line may be with an arrow, and the associated labels : relation's name,
stereotypes, role(s) and multiplicity(ies) :

95

When a class inherits a template class the actuals are indicated as a label of the realization :

To add a new relation between classes, select the appropriate relation through the buttons on the top of the
diagram sub window, click on the start class with the left mouse button, move the mouse, each time the mouse
button is raised a new line break is introduced, at least click on the end class. To abort a relation construction
press the right mouse button or do a double click with the left mouse button.

A line may be broken, during its construction of after clicking on the line with the left mouse button and
moving the mouse with the mouse button still pushed. To remove a line break, a double click on the point with
the left mouse button is enough, or use the line break menu of the point using the right mouse button.

By default the lines go to the center of their extremities, to decenter a line click near the desired extremity and
move the mouse click down. To come back to a center line, use the menu geometry

By default a relation is drawn with geometry, except if you ask for a given geometry depending on his kind
through the entry edit default geometries available in the menu of the project in the browser.

A right mouse click on a relation in a diagram or a double click with left mouse button calls the following menu
(supposing the relation editable) :

Menu : edit

To edit the relation

Menu : select labels

To select the labels (relation's name, stereotypes, role(s) and multiplicity(ies)) associated to the relation. Useful
when you are lost after many label movings.

96

Menu : labels default position

To place the labels (relation's name, stereotypes, role(s) and multiplicity(ies)) associated to the relation in the
default position. Useful when you are lost after many label movings.

By default when you move a class or a relation point break or edit the relation, the associated labels are moved
to their default position, this may be irritating. To ask BOUML to not move the associated labels on the
relations in a diagram, use the drawing settings of the diagrams.

Menu : geometry

Allows to choose one of the line geometry or to recenter a decentered line :

Note : if you manually move the central line of the last two geometries this one stop to be automatically
updated when you move one of the two extremities of the relation.

Menu : tools

Appears only when at least one plug-out is associated to the relation. To apply a plug-out on the relation.

Drawing settings

The drawing settings associated to the relations in a diagram may be set through the the diagram itself or one
of its parent, for instance :

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level.

draw all relations :

97

To automatically draw or not the new relations, obviously a relation will be added in a diagram only when the
start and end classes (may be the same) are drawn.

show relation modifier :

To automatically write or not the modifiers (read-only, ordered, unique, union)

show relation visibility :

To automatically write or not the visibility

automatic labels position :

To ask BOUML to move or to not move the associated labels on the relations in a diagram when the relation is
edited or the associated class pictures moved etc ...

show information note :

To ask Bouml to write the relation's constraint in the note attached to the class (except if this setting is set to
false on the class, or when you ask for hide at least relation's constraint).

Inheritance color :

Through the tab “color” you can set the color the the inheritances

Previous : class

Next : attribute

98

Attribute
Contrarily to the relations, there is no restriction concerning the types of the attributes, whose may be a class
or an int for instance. An attribute placed in a class stereotyped table represents a columns or a key, the
columns have a predefined list of types.

An attribute is created through the class menu called from the browser or a class picture in a class diagram :

When the class is stereotyped MySQL and MySQL is set through the global menu Languages you have to
choose between a column and a key :

The icon in the browser indicates if an attribute is public (+), protected (#), private (-) or package (~). The
protected and package visibilities are translated in private in Idl. The package visibility is translated in private
in C++. A class attribute is underlined. It is possible to move an attribute from a class into an other using the
drag and drop or the marked items capabilities, see browser items.

In a class having the stereotype enum, the attributes are renames item in the menus.

99

Menus

The attribute menu appearing with a right mouse click on its representation in the browser is something like
these, supposing it is not read-only nor deleted (the second one is associated to an enumeration's item) :

Menu : edit

edit allows to show/modify the properties of the attribute. In case the attribute is read-only, the fields of the
dialog are also read-only.

Attribute dialog, tab Uml

The tab Uml is a global tab, independent of the language except for the special case of a MySQL column/key
(see below).

For a standard attribute :

For an enumeration's item :

100

The proposed types for a standard attribute are the non class types defined in the first tab of the generation
settings, more all the classes defined in the project (with their localization to distinguish synonymous classes).
You are not limited to the proposed list, and any form (even invalid for the target language(s)) may be given.
The button type shows a menu proposing :

if the current type of the attribute is a class : to select this class in the browser

if the attribute is not read-only and if a class is selected in the browser : to set the type to be this class

if the view containing the class containing the attribute is not read-only : to create a new class and to set
the attribute type to it

Nevertheless I strongly recommend you to not add type modifier (like *, & etc ...) with a class name in the
UML tab because BOUML differentiate a reference to a class of the model and any other forms. Supposing you
also have the class attribute stops defined (for C++) like this :

the C++ generated code will be the desired one, but if you rename the class Stop, the type of the attribute
stops will not be updated. Furthermore the C++ code generator will not see the usage of the type Stop and
will not automatically generate class declaration and #include form for it.

The good way may be :

to say that stops is a Stop and modify the attribute definition in C++ to have a vector

to set the stereotype to vector and the multiplicity to *

but the right way here is to use a relation with the stereotype vector and the multiplicity * because Stop is
a class

The proposed stereotypes are the default ones specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it. The
stereotype of an attribute does not have special meaning for BOUML.

The initial value give the default value of the generated attribute(s). By default the generated form is exactly
the one you give, this means that you have to give the '=' when it must be generated, this allows to give the

101

arguments of a constructor.

The visibility may be chosen with the radio buttons, the attributes have a default visibility set through the
class settings :

By default the description is used to produce comments by the code generators.

The editor button visible above and associated here to the description and initial value, allows to edit the
description or initial value in an other window, or to call an external editor (for instance Xcoral) specified
through the environment dialog. Note that this external editor have to create an own window, its parameter is
the pathname of the file containing the description, its execution is done in parallel with BOUML which looks
each second at the file contents to get the new definition until the dialog is closed (I do not like very much this
polling but this works even QT isn't compiled with the thread support).

The default button visible above associated to the description allows to set the description with a default
contain specified through the generation settings. Useful to generate comments compatible Java Doc or
Doxygen for instance.

Attribute dialog, tab UML for a column (MySQL)

Here the list of the types is predefined and can't be changed.

Attribute dialog, tab UML for a key (MySQL)

The size is not relevant for the MySQL code generation.

Attribute dialog, tab C++

This tab allows to give the C++ definition of the attribute, it is visible only when C++ is set through the menu

102

Languages

For a standard attribute :

For an enumeration's item :

In BOUML the generated code is obtained by the substitution of macros in a text, only the Declaration part is
editable, the other one help you to see what will be generated for C++ (supposing you do not modify the C++
code generator !).

When you push the button default declaration, the form specified through the generation settings is
proposed, this last may be modified as you want, even to produce illegal source code.

When you do not want to have this attribute defined in C++, empties the declaration manually or using the
button not generated in C++.

It is possible to follow the visibility as it is set in the UML Tab or to change it.

${static} produce an empty string when the attribute is not a class attribute (see the UML tab), else produce
static

${const} produce an empty string when the attribute is not read only (see the UML tab), else produce const or
constexpr when the check box constexpr is checked

${type} is replaced by the type of the attribute (see the UML tab)

${stereotype} is replaced by the translation in C++ of the attribute's stereotype (see the UML tab)

${multiplicity} is replaced by the multiplicity of the attribute (see the UML tab), must be used in case the
multiplicity is a vector or array dimensioning ([and] are added when they are not present).

${name} is replaced by the attribute's name (see the UML tab)

${value} is replaced in the source file by the initial value of the attribute (see the UML tab) when this one is

103

not an enumeration item. For the enumeration items the value is of course generated in the header file.

${h_value} is replaced in the header file by the initial value of the attribute (see the UML tab). ${h_value}
must be used when you want to set the value of a const attribute.

${thread_local} produce an empty string when the check box thread_local is not checked, else produce
thread_local

${mutable} produce an empty string when the check box mutable is not checked, else produce mutable

${volatile} produce an empty string when the check box volatile is not checked, else produce volatile

The definition of the attribute stops may be :

Refer to the generation settings and the C++ Generator for more details and explanation of the other
keywords.

Attribute dialog, tab Java

This tab allows to give the Java definition of the attribute, it is visible only when Java is set through the menu
Languages

For a standard attribute (as you can see string is automatically translated into String thanks to the generation
settings):

For an enumeration's item :

104

In BOUML the generated code is obtained by the substitution of macros in a text, only the Declaration part is
editable, the other one help you to see what will be generated for Java (supposing you do not modify the Java
code generator !).

When you push the button default declaration, the form specified through the generation settings is
proposed, this last may be modified as you want, even to produce illegal source code.

When you do not want to have this attribute defined in Java, empties the declaration manually or using the
button not generated in Java.

It is possible to follow the visibility as it is set in the UML Tab or to change it replacing ${visibility} by the
desired one.

${static} produce an empty string when the attribute is not an class attribute (see the UML tab), else produce
static

${final} produce an empty string when the attribute is not read only (see the UML tab), else produce final

${transient} produce an empty string when check box transient is not checked, else produce transient

${volatile} produce an empty string when the check box volatile is not checked, else produce volatile

${type} is replaced by the type of the attribute (see the UML tab)

${stereotype} is replaced by the translation in Java of the attribute's stereotype (see the UML tab)

${multiplicity} is replaced by the multiplicity of the attribute (see the UML tab), must be used in case the
multiplicity is a vector or array dimensioning ([and] are added when they are not present).

${name} is replaced by the attribute's name (see the UML tab)

${value} is replaced by the initial value of the attribute (see the UML tab), may be used to specify the value of
an enumeration's item for instance

${@} produces the annotations, when it is present in the definition the button Edit annotation is active, a
specific dialog allows you to enter the annotations proposing the default annotations (Deprecated ...) and the
ones defined through the classes stereotyped @interface :

Refer to the generation settings and Java generator for more details and explanation of the other keywords.

Attribute dialog, tab Php

This tab allows to give the Php definition of the attribute, it is visible only when Php is set through the menu
Languages

105

For a standard attribute :

For an enumeration's item (of course in the generated code ... is replaced by the rank of the item in the enum) :

In BOUML the generated code is obtained by the substitution of macros in a text, only the Declaration part is
editable, the other one help you to see what will be generated for Php (supposing you do not modify the Php
code generator !).

When you push the button default declaration, the form specified through the generation settings depending
on the stereotype and multiplicity (and of course the language !) is proposed, this last may be modified as you
want, even to produce illegal source code.

When you do not want to have this attribute defined in Php, empties the declaration manually or using the
button not generated in Php.

It is possible to follow the visibility as it is set in the UML Tab or to change it replacing ${visibility} by the
desired one, to not generate the visibility set it to package

${static} produce an empty string when the attribute is not an class attribute (see the UML tab), else produce
static

${const} produce an empty string when the attribute is not read only (see the UML tab), else produce const

${var} produce var when the attribute is not read only nor static(see the UML tab) and the visibility is not
package, else produce an empty string

${name} is replaced by the attribute's name (see the UML tab)

${value} is replaced by the initial value of the attribute (see the UML tab)

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Refer to the generation settings and Php generator for more details and explanation of the other keywords.

106

Attribute dialog, tab Python

This tab allows to give the Python definition of the attribute, it is visible only when Python is set through the
menu Languages

For a standard attribute without multiplicity or with the multiplicity 1 :

For a standard attribute with a multiplicity not equal to 1 :

For an enumeration's item (of course in the generated code ... is replaced by the rank of the item in the enum) :

107

In BOUML the generated code is obtained by the substitution of macros in a text, only the Declaration part is
editable, the other one help you to see what will be generated for Python (supposing you do not modify the
Python code generator !).

When you push the button default declaration, the form specified through the generation settings depending
on the stereotype and multiplicity (and of course the language !) is proposed, this last may be modified as you
want, even to produce illegal source code.

When you do not want to have this attribute defined in Python, empties the declaration manually or using the
button not generated in Python.

The instance attributes are automatically produced at the beginning of the body of the operation __init__ (this
operation is produced for each class even when you don't define it). The static attributes are produced inside
the class definition.

${comment} produces a comment from the UML description, adding a # at the beginning or each line,
following the current indent. A newline is produced if needed at the end to not have something else generated
on the same line after the comment.

${description} is like for ${comment} but without adding #.

${self} inside the operation __init__ this produces the name of the first parameter followed by a dot, else
nothing.

${type} produces the type of the attribute, probably used inside a comment, may be for a form @var

${multiplicity} produces the multiplicity of the attribute, probably used inside a comment

${stereotype} is replaced by the translation in Python of the attribute's stereotype (see the UML tab)

${name} is replaced by the attribute's name (see the UML tab)

${value} is replaced by the initial value of the attribute (see the UML tab) if it is not empty, else None

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Refer to the generation settings and Python generator for more details and explanation of the other keywords.

Attribute dialog, tab Idl

This tab allows to give the Idl definition of the attribute, it is visible only when Idl is set through the menu
Languages

For a standard attribute (here of a valuetype) :

108

For an enumeration's item :

In BOUML the generated code is obtained by the substitution of macros in a text, only the Declaration part is
editable, the other one help you to see what will be generated for Idl (supposing you do not modify the Idl code
generator !).

When you push the button default declaration, the form specified through the generation settings is
proposed, this last may be modified as you want, even to produce illegal source code.

When you do not want to have this attribute defined in Idl, empties the declaration manually or using the
button not generated in Idl

It is possible to follow the visibility as it is set in the UML Tab or to change it replacing ${visibility} by the
desired one.

${type} is replaced by the type of the attribute (see the UML tab)

${name} is replaced by the attribute's name (see the UML tab)

${stereotype} is replaced by the translation in Idl of the attribute's stereotype (see the UML tab)

${multiplicity} is replaced by the multiplicity of the attribute (see the UML tab)

Refer to the generation settings and Idl generator for more details and explanation of the other keywords.

Attribute dialog, tab MySQL

This tab allows to give the MySQL definition of the attribute, it is visible only when MySQL is set through the
menu Languages

For a column :

109

In BOUML the generated code is obtained by the substitution of macros in a text, only the Declaration part is
editable, the other one help you to see what will be generated for MySQL (supposing you do not modify the
MySQL code generator !).

When you push the button default columns declaration, the form specified through the generation settings is
proposed, this last may be modified as you want, even to produce illegal source code.

When you do not want to have this attribute defined in MySQL, empties the declaration manually or using the
button not generated in MySQL

${name} is replaced by the attribute's name (see the UML tab)

${type} is replaced by the type of the attribute including the size when it is set (see the UML tab)

${notnull} is replaced by NOT NULL when it is set

${autoincr} is replaced by AUTO_INCREMENT when it is set

${stereotype} is replaced by the stereotype (see the UML tab), probably for a documentation purpose

Refer to the generation settings and MySQL generator for more details

For a (non foreign) key :

110

In BOUML the generated code is obtained by the substitution of macros in a text, only the Declaration part is
editable, the other one help you to see what will be generated for MySQL (supposing you do not modify the
MySQL code generator !).

When you push the button default key declaration, the form specified through the generation settings is
proposed, this last may be modified as you want, even to produce illegal source code.

When you do not want to have this attribute defined in MySQL, empties the declaration manually or using the
button not generated in MySQL

${constraint} is replaced by the constraint

${modifier} adds the optional prefix depending on the kind of the key, allowing to have a simple key or a
primary / unique / fulltext / spacial key

${name} is replaced by the attribute's name (see the UML tab)

${type} is replaced by the specified type of the key (nothing, USING BTREE or USING HASH)

${columns} is replaced by the columns of the key, they are set through the tab key columns

${ref} is not managed here, it is relevant only for the foreign keys

${stereotype} is replaced by the stereotype (see the UML tab), probably for a documentation purpose

Menu : duplicate

The menu entry duplicate clone the attribute.

Menu : add ...

These entries allow to produce get and set operations on the attribute, contrarily to the similar operations
made by hand, these two ones are linked to the associated attribute to be updated, or deleted when the
attributes is deleted. The default name of the operations and their characteristics are set through the
generation settings.

By default, the get and set operations generated for the Stop's attribute name are :

C++

inline const string Stop::get_name() const {
return name;

}

void Stop::set_name(string new_value) {
name = new_value;

}

Java

public final String get_name() {
return value;

}

111

public void set_name(String new_value) {
 name = new_value;
}

Php

final public function getName()
{

return $this->name;
}

public function setName($value)
{

$this->name = $value;
}

Idl

string get_name();

void set_name(string new_value);

Menu : delete

The menu entry delete is only present when the attribute is not read-only.

Delete the attribute, associated get and set operations when they exist, and all the representation of them in
the opened diagrams. After that it is possible to undelete them (from the browser) until you close the project :
obviously the deleted items are not saved !

Menu : mark

See mark

Menu : tool

Appears only when at least one plug-out is associated to the attributes. To apply a plug-out on the attribute.

Default stereotypes

The dialog allowing to set the default stereotypes has a tab associated to the class and members :

112

The stereotype of an attribute does not have a special meaning for BOUML.

Generation settings

This very important dialog allows to specify many default definitions concerning the attributes, more details
will be given in C++ generator, Java generator and Idl generator.

The first tab allows to specify how the types not supported by an UML class are translated in each language
(except Php, Python and MySQL) :

As usual the last column do allows to copy/past/cut/insert line and applies on the line where you did the mouse
click.

The third C++ tab allows to set the default definition of an attribute in C++, only visible when C++ is set
through the menu Languages and the attribute is not defined in a class stereotyped table :

113

The fourth C++ tab allows to set the default definition of an enumeration's item in C++ and to specify the get
and set operations specificities in C++, only visible when C++ is set through the menu Languages and the
attribute is not defined in a class stereotyped table :

The second Java tab allows to set the default definition of an attribute in Java, only visible when Java is set
through the menu Languages and the attribute is not defined in a class stereotyped table :

114

The third Java tab allows to set the default definition of an enumeration's item in Java, to set the get and set
operations specificities in Java, only visible when Java is set through the menu Languages and the attribute is
not defined in a class stereotyped table :

The second Php tab allows to set the default definition of an attribute, to set the default definition of an
enumeration's item, and to set the get and set operations specificities in Php, only visible when Php is set
through the menu Languages and the attribute is not defined in a class stereotyped table :

115

The first Python tab allows to set the default attribute definition for Python depending on the multiplicity, only
visible when Python is set through the menu Languages and the attribute is not defined in a class stereotyped
table :

The second Python tab allows to set the default enum item definition for Python and the get and set
specificities for Idl, only visible when Python is set through the menu Languages and the attribute is not
defined in a class stereotyped table :

116

The second Idl tab allows to set the default attribute definition for Idl, only visible when Idl is set through the
menu Languages and the attribute is not defined in a class stereotyped table :

The third Idl tab allows to set the default definition of an attribute in a union, the enumeration item default
definition and the get and set specificities for Idl, only visible when Idl is set through the menu Languages and
the attribute is not defined in a class stereotyped table :

117

The tab MySQL allows to set the default definition of a column and key, only visible when MySQL is set through
the menu Languages and the attribute is defined in a class stereotyped table :

The tab Description allows to set a default description :

118

Drawing

The attributes are only drawn with their class in a class diagram (here the drawing language is UML, the full
member definitions and the visibility are shown) :

The way an attribute is written or not in its class picture depend on the class drawing settings, drawing
language, hide attributes, show member visibility, show attribute multiplicity, show attribute initialization,
member max width and show full members definition, and also on the class menu entry individual attribute
visibility.

Changing the drawing language from UML (the default) to C++ or IDL :

Changing the drawing language to Java:

Changing the drawing language to Php :

119

Changing the drawing language to Python :

When the attribute is defined in a class stereotyped table (MySQL) the representation is very different, even it
also depends on the class drawing settings. Here we don't ask for to see the full member definition so the keys
are hidden, the columns are shown with the indication saying if they participate to keys :

When asking for the full members definition (other options are not set) :

Adding the option to show members multiplicity :

Adding the option to show attribute initialization :

Adding the option to show the modifiers :

Previous : relation

120

Next : operation

121

Operation
BOUML only manage class's operations and friend operations, not standard C or Php and Python functions
(even it is possible to define a C, Php and Python function through an extra member or in an artifact definition
etc ...). An operation may have a stereotype, but it does not have a special meaning for BOUML.

Contrarily to several UML toolbox, the body of the operations is fully managed by BOUML and saved among
the project data (see project files). However you can also enter the bodies out of BOUML thanks to the option
Preserve operations's bodies of the Language (see top level menu).

An operation is created through the class menu called from the browser or a class picture in a class diagram :

The icon in the browser indicate if the operation is public (+), protected (#) , private (-) or package (~). The
protected and package visibilities are translated in private in Idl. The package visibility is translated in private
in C++, and produce nothing in Php allowing you to generate Php 4 code. Note that BOUML doesn't check the
validity of the (re)refinition of an inherited operation (for instance the visibility is not checked, the operation
may be final in Java etc ...), but some operations are not part of the proposed operations list : the constructors,
destructors, and the operations already defined in the current class for the UML point of view (the 'UML'
definition of an operation is the one written under the browser window when the operation is selected in the
browser).

The operation named __init__ has a special management in Python, it is used to place the initializations or the
instance attributes and relations. The python generator add the definition of this operation when it doesn't
exist.

A class operation is underlined, an abstract one is written in italic. It is possible to move an operation from a
class into an other, except for the get and set operations associated to a relation or an attribute.

Menus

The operation menu appearing with a right mouse click on its representation in the browser is something like
these, supposing it is not read-only nor deleted :

122

Menu : edit

edit allows to show/modify the operation properties including the body. In case the operation is read-only, the
fields of the dialog are also read-only.

Operation dialog, tab Uml

The tab Uml is a global tab, independent of the language :

The name may contains spaces to define C++ operator for instance, and a class may have several operations
having the same name. A class constructor have the name of its class.

The proposed type for the value type etc ... are the non class types defined in the first tab of the generation
settings, more all the classes defined in the project (with their localization to distinguish synonymous classes).
You are not limited to the proposed list, and any form (even invalid for the target language(s)) may be given.
The button value type: shows a menu proposing :

if the current value type is a class : to select this class in the browser

if the operation is not read-only and if a class is selected in the browser : to set the value type to be this
class

if the view containing the class containing the operation is not read-only : to create a new class and to set
the return type to it

Nevertheless I strongly recommend you to not add type modifier (like *, & etc ...) with a class name in the
UML tab because BOUML differentiate a reference to a class of the model and any other forms, see type
considerations.

The proposed stereotypes are the default ones specified through the Default stereotypes dialog more the

123

current one (empty here). It is possible to choose into the list or to give a new one, or to empty it. The
stereotype of an operation does not have special meaning for BOUML.

The visibility may be chosen with the radio buttons, the operations have a default visibility set through the
class settings :

Force body generation allows to generate the body of the operation even if preserve operations's body is set
in the menu Languages. This option is used by the state machine generator to produce the body of the
generated operations in all the cases.

The parameters have obviously a direction (but I known a commercial UML tool which does not manage it !), a
name, a type (following the considerations about the return value type) and a default value (unfortunately this
one is not yet managed by the code generators !). The last column (do) of the parameters table allows to
insert/delete/move a parameter :

When you add/remove/modify a parameter:

if only one language is set through the global menu Language, the definition of the operation for this
language is updated to take into account the change. However the changes are based on the defaults set
through the generation settings, the default definition of the parameters can't be the expected one in all
the cases and I encourage you to check them

else nothing is done, this allows you to have different parameters list depending on the target language in
case of a multi languages generation

The exceptions produced by the operation may be specified (even for C++), these types follow the
considerations about the return value type. The last column (do) of the exception table allows to
insert/delete/move an exception.

By default the description is used to produce comments by the code generators.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

The default button visible above associated to the description allows to set the description with a default
contain specified through the generation settings. Useful to generate comments compatible Java Doc or
Doxygen for instance.

Operation dialog, tab C++

This tab allows to give the C++ declaration and definition of the operation, it is visible only if C++ is set
through the Language menu

124

In BOUML the generated code is obtained by the substitution of macros in a text, only the Declaration and
Definition part are editable, the other one help you to see what will be generated for C++ (supposing you do
not modify the C++ code generator !). You can see above that the definition doesn't contains the name of the
parameters whose aren't used to avoid C++ compiler warnings.

When you push the button Default declaration or Default definition, the form specified through the
generation settings is proposed adding all the operation parameters given in the UML tab without any modifier.
These forms may be modified as you want, even to produce illegal source code, but more probably to add type
modifiers etc ...

The buttons From definition and From declaration allow to produce the declaration/definition from the
definition/declaration getting the specified list of parameters and return type definition. For instance if I modify
the operation's declaration like this (the first parameter is modified and the second and third ones removed) :

and I press the From declaration button, the modifications are reported in the operation's definition :

125

When you do not want to have this operation defined in C++, empties the declaration/definition manually or
using the button not generated in C++.

It is possible to follow the visibility as it is set in the UML Tab or to change it.

${static} produce an empty string when the operation is not an class operation (see the UML tab), else
produce static

${const} produce an empty string when the check box const is not checked, else produce const

${volatile} produce an empty string when the check box volatile is not checked, else produce volatile

${friend} produce an empty string when the check box friend is not checked, else produce friend

${virtual} produce an empty string when the check box virtual is not checked, else produce virtual

${inline} produce an empty string when the check box inline is not checked, else produce inline

${type} is replaced by the value type (see the UML tab)

${multiplicity} is replaced by the multiplicity of the return type (see the UML tab), a priori used in a comment

${abstract} produce the string = 0 when the operation is abstract (see the UML tab), else an empty string.

${class} is replaced by the name of the class containing the operation.

${staticnl} produce a line break when the operation is static, else an empty string. In case you do not like this
notation, change the generation settings to remove this macro.

${(} and ${)} produce (and), but there are also a mark for BOUML to find the parameters list

${t<n>}, ${p<n>} and ${v<n>} produce the type, name and default value of each parameter (count from 0),
this allows you to remove a parameter, add type modifiers etc ...

${m<n>} produce the multiplicity of each parameter (count from 0), a priori used in a comment

${throw} is replaced by the form throw (...) when at least an exception is defined in the UML tab. It is also
possible to produce throw() when there is no exception depending on the generation settings.

${body} is replaced by the body of the operation, this macro may also be replaced by the body itself (BOUML
use this way for the get and set operations associated to a relation/attribute). The usage of ${body} has a great
advantage : when you hit Default definition or From declaration the body is not cleared ! At least BOUML
share the declaration and definition forms of the operations (and other objects) to minimize the needed
memory size, ${body} help for this ! When contextual body indent is toggled the indentation of the keyword

126

${body} is added to the indentation of the operation at the beginning of each line except the ones starting by a
'#' or when the previous one ends by '\'. Since release 3.4 contextual body indent is not set when an operation
is produced by a reverse to not alter the original indent.

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

A template operation is defined with an empty declaration (allowing Bouml to detect this case) and placing the
actuals between ${class} and :: in the definition part.

The edit body button is active when the definition contains ${body}, to edit it through the editor you want use
the environment dialog, furthermore, when you set add operation profile on body edition through the
miscellaneous menu the form defining the operation in the editor is added at the beginning of the edited file.

Operation dialog, tab Java

This tab allows to give the Java definition of the operation, it is visible only if Java is set through the Language
menu

In BOUML the generated code is obtained by the substitution of macros in a text, only the Definition part is
editable, the other one help you to see what will be generated for Java (supposing you do not modify the Java
code generator !).

When you push the button Default definition, the form specified through the generation settings is proposed
adding all the operation parameters given in the UML tab. These forms may be modified as you want, even to
produce illegal source code !

When you do not want to have this operation defined in Java, empties the definition manually or using the
button not generated in Java.

127

${visibility} produce the visibility (see the UML tab)

${final} produce an empty string when the check box final is not checked, else produce final

${static} produce static when the operation is a class operation (see the UML tab), default in an interface
when the check box default is checked, else an empty string

${abstract} produce abstract when the operation is abstract (see the UML tab), else an empty string.

${synchronized} produce an empty string when the check box synchronized is not checked, else produce
synchronized

${type} is replaced by the value type (see the UML tab)

${multiplicity} is replaced by the multiplicity of the return type (see the UML tab), a priori used in a comment

${name} is replaced by the name of the operation.

${(} and ${)} produce (and), but there are also a mark for BOUML to find the parameters list

${t<n>} and ${p<n>} produce the type and the name of each parameter (count from 0), this allows you to
remove a parameter, add type modifiers etc ...

${m<n>} produce the multiplicity of each parameter (count from 0), a priori used in a comment

${throws} is replaced by the form throw (...) when at least an exception is defined in the UML tab. It is also
possible to produce throw() when there is no exception depending on the generation settings.

${staticnl} produce a line break when the operation is static, else an empty string. In case you do not like this
notation, change the generation settings to remove this macro.

${body} is replaced by the body of the operation, this macro may also be replaced by the body itself (BOUML
use this way for the get and set operations associated to a relation/attribute). The usage of ${body} has a great
advantage : when you hit Default definition the body is not cleared ! At least BOUML share the definition
forms of the operations (and other objects) to minimize the needed memory size, ${body} help for this ! When
contextual body indent is toggled the indentation of the keyword ${body} is added to the indent of the
operation at the beginning of each line. Since release 3.4 contextual body indent is not set when an operation is
produced by a reverse to not alter the original indent.

${@} produces the annotations, when it is present in the definition the button Edit annotation is active, a
specific dialog allows you to enter the annotations proposing the default annotations (Deprecated ...) and the
ones defined through the classes stereotyped @interface :

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

The edit body button is active when the definition contains ${body}, to edit it through the editor you want use
the environment dialog, furthermore, when you set add operation profile on body edition through the
miscellaneous menu the form defining the operation in the editor is added at the beginning of the edited file.

128

Operation dialog, tab Php

This tab allows to give the Php definition of the operation, it is visible only if Php is set through the Language
menu

In BOUML the generated code is obtained by the substitution of macros in a text, only the Definition part is
editable, the other one help you to see what will be generated for Php (supposing you do not modify the Php
code generator !).

When you push the button Default definition, the form specified through the generation settings is proposed
adding all the operation parameters given in the UML tab. These forms may be modified as you want, even to
produce illegal source code !

When you do not want to have this operation defined in Php, empties the definition manually or using the
button not generated in Php.

static&abstract allows to have the operation both static and abstract. This is not possible in the other
languages, the corresponding toggles in the tab UML cannot be set at the same time. So when you ask for only
the toggle static is set, and in the definition for Php the keyword ${abstract} is replaced by abstract.

${visibility} produce the visibility (see the UML tab), except if the visibility is package, use this case to
generate Php 4 code

${final} produce an empty string when the check box final is not checked, else produce final

${static} produce an empty string when the operation is not a class operation (see the UML tab), else produce
static

${abstract} produce abstract when the operation is abstract (see the UML tab), else an empty string.

${name} is replaced by the name of the operation.

${type} is replaced by the value type (see the UML tab)

129

${multiplicity} is replaced by the multiplicity of the return type (see the UML tab), a priori used in a comment

${(} and ${)} produce (and), but there are also a mark for BOUML to find the parameters list

${t<n>}, ${p<n>} and ${v<n>} produce the type, name and default value of each parameter (count from 0),
this allows you to remove a parameter, add modifiers etc ...

${m<n>} produce the multiplicity of each parameter (count from 0), a priori used in a comment

${staticnl} produce a line break when the operation is static, else an empty string. Not used bu default, to add
it change the generation settings to use this macro.

${body} is replaced by the body of the operation, this macro may also be replaced by the body itself (BOUML
use this way for the get and set operations associated to a relation/attribute). The usage of ${body} has a great
advantage : when you hit Default definition the body is not cleared ! At least BOUML share the definition
forms of the operations (and other objects) to minimize the needed memory size, ${body} help for this ! When
contextual body indent is toggled the indentation of the keyword ${body} is added to the indent of the
operation at the beginning of each line. Since release 3.4 contextual body indent is not set when an operation is
produced by a reverse to not alter the original indent.

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

The edit body button is active when the definition contains ${body}, to edit it through the editor you want use
the environment dialog, furthermore, when you set add operation profile on body edition through the
miscellaneous menu the form defining the operation in the editor is added at the beginning of the edited file.

Operation dialog, tab Python

This tab allows to give the Python definition of the operation, it is visible only if Python is set through the
Language menu

In BOUML the generated code is obtained by the substitution of macros in a text, only the Definition part is
editable, the other one help you to see what will be generated for Python (supposing you do not modify the
Python code generator !).

When you push the button Default definition, the form specified through the generation settings is proposed
adding all the operation parameters given in the UML tab. These forms may be modified as you want, even to
produce illegal source code !

When you do not want to have this operation defined in Python, empties the definition manually or using the
button not generated in Python.

130

${@} produce the decorators, don't use decorator to produce @staticmethod and @abstractmethod, see
${static} and ${abstract} bellow

${static} produce @staticmethod followed by a newline if the method is declared static in the UML tab, else an
empty string

${abstract} produce @abstractmethod followed by a newline if the method is declared abstract in the UML
tab, else an empty string

${name} is replaced by the name of the operation.

${(} and ${)} produce (and), but there are also a mark for BOUML to find the parameters list

${t<n>}, ${p<n>} and ${v<n>} produce the type, name and default value of each parameter (count from 0),
this allows you to remove a parameter name, add modifiers etc ...

${m<n>} produce the multiplicity of each parameter (count from 0), a priori used in a comment

${type} produces the operation return type, if it is not empty the type generation is preceded by -> (ref.
pep3107)

${multiplicity} is replaced by the multiplicity of the return type (see the UML tab), a priori used in a comment

${class} is replaced by the name of the class containing the operation.

${docstring} produce the description of the operation placed between ””” and followed by a new line if the
description is not empty, else nothing is produced. If you prefer you can use ${comment} or ${description}

${body} is replaced by the body of the operation, this macro may also be replaced by the body itself (BOUML
use this way for the get and set operations associated to a relation/attribute). The usage of ${body} has a great
advantage : when you hit Default definition the body is not cleared ! At least BOUML share the definition
forms of the operations (and other objects) to minimize the needed memory size, ${body} help for this ! When
contextual body indent is toggled the needed indentation is added to the body (this mean at least the first line
is not indented. Since release 3.4 contextual body indent is not set when an operation is produced by a reverse
to not alter the original indent. In the special case of the __init__ operation the initialization of the instance
attributes and relations is added before the body, they are not produced if ${body} is not part of the operation
definition.

${association} in case the operation is a getter/setter on a relation produce the association (may be the class
forming a class-association with the relation) set on the relation

${type} is replaced by the return type, a priori used in a comment, may be for a form @return

${multiplicity} is replaced by the multiplicity of the return type (see the UML tab), a priori used in a comment

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

The edit body button is active when the definition contains ${body}, to edit it through the editor you want use
the environment dialog, furthermore, when you set add operation profile on body edition through the
miscellaneous menu the form defining the operation in the editor is added at the beginning of the edited file.

Operation dialog, tab Idl

This tab allows to give the Idl declaration of the operation, it is visible only if Idl is set through the Language
menu

131

In BOUML the generated code is obtained by the substitution of macros in a text, only the Definition part is
editable, the other one help you to see what will be generated for Java (supposing you do not modify the Java
code generator !).

When you push the button Default definition, the form specified through the generation settings is proposed
adding all the operation parameters given in the UML tab. These forms may be modified as you want, even to
produce illegal source code !

When you do not want to have this operation defined in Java+, empties the definition manually or using the
button not generated in Idl.

${oneway} produce an empty string when the check box oneway is not checked, else produce oneway

${type} is replaced by the value type (see the UML tab)

${multiplicity} is replaced by the multiplicity of the return type (see the UML tab), a priori used in a comment

${name} is replaced by the name of the operation.

${(} and ${)} produce (and), but there are also a mark for BOUML to find the parameters list

${t<n>} and ${p<n>} produce the type and the name of each parameter (count from 0), this allows you to
remove a parameter, add type modifiers etc ...

${m<n>} produce the multiplicity of each parameter (count from 0), a priori used in a comment

${raise} is replaced by the form raise (...) when at least an exception is defined in the UML tab.

${raisenl} produce a line break when the operation have exception, else an empty string. In case you do not
like this notation, change the generation settings to remove this macro.

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Menu : duplicate

The menu entry duplicate clone the operation.

Menu : delete

The menu entry delete is only present when the operation is not read-only.

Delete the operation, and all its representation in the diagrams. After that it is possible to undelete it (from the
browser) until you close the project : obviously the deleted items are not saved !

132

Menu : mark

See mark

Menu : tools

Appears only when at least one plug-out is associated to the operations. To apply a plug-out on the operation.

Generation settings

This very important dialog allows to specify many default definitions concerning the operations, more details
will be given in C++ generator, Java generator, Php generator and Idl generator.

The first tab allows to specify how the types not supported by an UML class are translated in each language
except Php, and the default C++ argument passing for these types depending on the direction more the default
type form to return value :

As usual the last column do allows to copy/past/cut/insert line and applies on the line where you did the mouse
click.

The fourth C++ tab Stereotypes allows to specify the default declaration and definition of an operation
(without the parameters), the default argument passing for an enumeration's item and an argument whose type
is not one of the types defined in the first tab, and if a throw() must be generated when the operation does not
have exception. They are visible only if C++ is set through the menu Languages

133

The second Java tab allows to set the default operation definition (without the parameters) in Java, it is visible
only if Java is set through the menu Languages

The second Php tab allows to set the default operation definition (without the parameters) in Php, it is visible
only if Php is set through the menu Languages

134

The second Python tab allows to set the default operation definition (without the parameters) in Python for
standard operation and for the special case of the __init__ operation, it is visible only if Python is set through
the menu Languages

The third Idl tab allows to set the default operation declaration in Idl, it is visible only if Idl is set through the
menu Languages

135

The tab Description allows to set a default description :

Drawing

The operations are drawn with their class in a class diagram, and alone in a sequence diagram or a
collaboration diagram.

The way an operation is written or not in its class picture in a class diagram depend on the class drawing
settings options drawing language, hide operation, show full members definition, member max width and show
member visibility, and also on the class menu entry individual operation visibility.

For instance in a class diagram, the drawing language is UML, the full member definitions and visibility are
shown, and the attributes are hidden :

136

changing the drawing language from UML (the default) to C++ :

changing the drawing language to Java :

Previous : attribute

Next : port

137

Port / port reference
A port is a child of a class and is created through the class menu called from the browser or a class picture in a
class diagram :

A port reference is a child of a part/role/part instance/role instance. When a port reference is connected by a
connector this connector is a child of the port reference, this is why the port reference are present into the
browser. They reference the ports own by the class typing the port or the inherited ones. When you change the
type of a role/part the references to the ports already created but illegal for the new type are deleted, but still
present in the browser like for any kind of element, you cannot undelete them. If you change again the type of
the role/part the deleted reference of ports whose are compatible with the new type are automatically
undeleted. Note you can also delete/undelete manually the reference to ports when it is allowed. You cannot
edit these reference, when you choose edit in their menu or do a double click on them this edit the referenced
port. If you added a port reference on a role / part which is inherited by the type of the role / part then you
change the inheritances and some ports stop to be inherited this has no impact on their references, I do that to
allow to work on generalization/realization without to strong impact.

To add a port reference to a part/role, use the entry add port reference of the menu of the part/role in the
browser and choose one of the proposed port. Of course this menu entry is only proposed in case the part/role
doesn't already reference all the possible ports, including through a deleted port reference, in that case just
undelete the port reference.

At a part instance/role instance level the goal is a priori to have the port references corresponding to the ones
of the part/role, so in the browser the menu or a part instance/role instance doesn't propose to add the port
reference one by one by but to get all. Of course this menu entry is only proposed if the instance doesn't
already have all the possible port references as children, or if at least one is deleted, the deleted port reference
will be automatically undeleted if you choose the menu entry.

138

Menus (port)

The port menu appearing with a right mouse click on its representation in the browser is something like this,
supposing it is not read-only nor deleted (see also menu in a diagram) :

Menu : edit

edit allows to show/modify the properties of the port In case the port is read-only, the fields of the dialog are
also read-only.

Port dialog, tab Uml

The proposed types are all the classes defined in the project. When you change the type of a port the used and
realized class lists are automatically updated like that :

if the type of the port is an interface, this interface is realized, else the realized classes are the inherited
interfaces.

the used classes are the interfaces designed by dependencies stereotyped use from the type of the port.

The button type shows a menu proposing :

to select this class in the browser

if the port is not read-only and if a class is selected in the browser : to set the type to be this class

if the view containing the class containing the port is not read-only : to create a new class and to set the

139

port type to it

The proposed protocols are all the state machine defined in the project. The button protocol shows a menu
proposing :

to select this state machine in the browser

if the port is not read-only and if a state machine is selected in the browser : to set the protocol to be this
machine

Port dialog, tab Used Classes

You can manualy add or remove classes in the used class list selecting one or several of them and using an
arrow button. The available classes are filtered by the stereotype being interface by dfault. Of course the
button default list reset the used class list to the default list like when you change the type of the port.

Port dialog, tab Realized Classes

You can manualy add or remove classes in the realized class list selecting one or several of them and using an
arrow button. The available classes are filtered by the stereotype being interface by dfault. Of course the
button default list reset the realized class list to the default list like when you change the type of the port.

Menu : duplicate

The menu entry duplicate clone the port.

Menu : delete

The menu entry delete is only present when the port is not read-only.

140

Delete the port, and all the representation of it in the opened diagrams. After that it is possible to undelete it
(from the browser) until you close the project : obviously the deleted items are not saved !

Menu : mark

See mark

Menu : tool

Appears only when at least one plug-out is associated to the ports. To apply a plug-out on the port.

Menu : select ...

Appears only when the port has used/realized class(es), to select one ot them in the browser.

Menus (port reference)

The port reference menu appearing with a right mouse click on its representation in the browser is something
like this, supposing it is not read-only nor deleted (see also menu in a diagram) :

Menu : select port

To select the referenced port.

Menu : edit

edit allows to show/modify the properties of the port, not the one of the port reference. In case the port is read-
only, the fields of the dialog are also read-only.

Menu : delete

The menu entry delete is only present when the port is not read-only.

Delete the reference port, and all the representation of it in the opened diagrams. After that it is possible to
undelete it (from the browser) until you close the project : obviously the deleted items are not saved !

Menu : mark

See mark

Drawing

The ports and port references are only drawn with their supporting element is drawn in a class diagram and
class composite diagram.

141

A right mouse click on a port in a class diagram calls the following menu (supposing the port editable) :

Menu : edit drawing settings

These drawing settings concerns only the picture for which the menu is called.

142

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level. When you add a port in a diagram, all
the settings are set to default.

Menu tools :

Appears only when at least one plug-out is associated to the ports. To apply a plug-out on the port.

Previous : operation

Next : part/role

143

Part / Role / Part instance / Role instance
A part/role is a child of a class and is created through the class menu called from the browser :

A part instance/role instance is a child or a class instance and is created through the entry Add part/role
instance of the class instance menu called from the browser supposing the corresponding class has part/role :

Menus (part/role)

The part/role menu appearing with a right mouse click on its representation in the browser is something like
these, supposing it is not read-only nor deleted :

Menu : Add port reference

Only present in case the type of the role/part has at least a port without a corresponding instance into the
part/role

.

edit allows to

Menu : edit

edit allows to show/modify the properties of the part/role. In case the part/role is read-only, the fields of the
dialog are also read-only.

144

The proposed types are all the classes defined in the project (with their localization to distinguish synonymous
classes). The button type shows a menu proposing :

to select the classe typing the part/role in the browser

if the part/role is not read-only and if a class is selected in the browser : to set the type to be this class

if the view containing indirectly the part/role is not read-only : to create a new class and to set the
part/role type to it

When you change the type of a role/part the references to the ports already created but illegal for the new type
are deleted, but still present in the browser like for any kind of element, you cannot undelete them. If you
change again the type of the part/role the deleted reference of ports whose are compatible with the new type
are automatically undeleted. Note you can also delete/undelete manually the reference to ports when it is
allowed. If you added a port reference on a role / part which is inherited by the type of the role / part then you
change the inheritances and some ports stop to be inherited this has no impact on their references, I do that to
allow to work on generalization/realization without to strong impact.

Menu : delete

The menu entry delete is only present when the part/role is not read-only not already deleted.

Delete the part/role and all the representation of them in the opened diagrams. After that it is possible to
undelete them (from the browser) until you close the project : obviously the deleted items are not saved !

Menu : mark

See mark

Menu : tool

Appears only when at least one plug-out is associated to the part/role. To apply a plug-out on the part/role.

Default stereotypes

The dialog allowing to set the default stereotypes has the tab others for the part/role :

145

The stereotype of a part/role does not have a special meaning for BOUML.

Menus (part/role instance)

The part/role instance menu appearing with a right mouse click on its representation in the browser is
something like these, supposing it is not read-only nor deleted :

Menu : Default ports

At a part instance/role instance level the goal is a priori to have the port references corresponding to the ones
of the part/role, so the menu doesn't propose to add the port reference one by one by but to get all. Of course
this menu entry is only proposed if the instance doesn't already have all the possible port references as
children, or if at least one is deleted, the deleted port reference will be automatically undeleted if you choose
this menu entry.

Menu : edit

edit allows to show/modify the properties of the part/role instance. In case the part/role instance is read-only,
the fields of the dialog are also read-only.

Part/role instance dialog, tab Uml

146

It is not possible to change the type of the instance, it was set when you created the instance, the button
role/part proposes only to select the type of the instance into the browser

Part/role instance dialog, tab Attributes

This tab allows to set a value to each of the attributes of the type of the role/part typing the instance

Menu : delete

The menu entry delete is only present when the part/role instance is not read-only nor already deleted.

Delete the part/role instance and all the representation of them in the opened diagrams. After that it is possible
to undelete them (from the browser) until you close the project : obviously the deleted items are not saved !

Part/role drawing

The part/role are only drawn in a class composite diagram or in the composite compartment of a class in a
class diagram

147

A right mouse click on a part/role in a class composite diagram calls the following menu (supposing the
part/role editable) :

Menu : edit

To edit the part/role.

Menu : edit drawing settings

To set the color of the part/role, concerns only the picture for which the menu is called.

Menu tools :

Appears only when at least one plug-out is associated to the part/role. To apply a plug-out on the part/role.

Part/role instance drawing

The part/role instance are only drawn in an object composite diagram or in the composite compartment of a
class instance in an object diagram

148

A right mouse click on a part/role instance in a object composite diagram calls the following menu (supposing
the part/role instance editable) :

Menu : edit

To edit the part/role instance.

Menu : edit drawing settings

To set the color of the part/role instance, concerns only the picture for which the menu is called.

Previous : port

Next : extra member

149

Extra member
An extra member is an alien allowing you to specify directly the generated code for each language. This allows
to manage non UML items, for instance C++ pre-processor directives, Java attribute initializations etc ...

An extra member is created through the class menu called from the browser :

Menus

The extra member menu appearing with a right mouse click on its representation in the browser is something
like these, supposing it is not read-only nor deleted :

Menu : edit

edit allows to show/modify the extra member properties. In case the extra member is read-only, the fields of the
dialog are also read-only.

Extra member dialog, tab Uml

The tab Uml is a global tab, independent of the language :

The name and the stereotype do not have meaning for BOUML.

The description is not used by the code generators.

150

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Extra member dialog, tab C++

The tab C++ allows to specify the code generated in the header and/or the source file(s), it is visible only if
C++ is set through the menu Languages

The declaration part is generated in the definition of the class containing the extra member, except if the inline
toggle is set, in this case the generation is made after the class definition as for an inline operation.

The definition part is produced in the source file rather than in the header one.

For instance with :

EM #ifdef #endif

and :

151

The generated code for the class is :

C++ header C++ source

class EM {
#ifdef NEEDED
// decl

public:
void op();

#endif
};

#ifdef NEEDED
// def
void EM::op() {
}

#endif

In case the extra members and op are inline, all is generated in the header file :

C++ header

class EM {
#ifdef NEEDED
// decl

public:
void op();

#endif
};

#ifdef NEEDED
// def
inline void EM::op() {
}

#endif

Extra member dialog, tab Java

The tab Java allows to specify the code generated in Java, it is visible only if Java is set through the menu
Languages, for instance with :

EM2 init

152

EM2 init

and :

The generated code for EM2 is :

class EM2 {
protected Hashtable ht;

static { H = new Hashtable(); }
}

Extra member dialog, tab Php

The tab Php allows to specify the code generated in Php, it is visible only if Php is set through the menu
Languages :

Extra member dialog, tab Python

The tab Python allows to specify the code generated in Python, it is visible only if Python is set through the
menu Languages :

153

Extra member dialog, tab Idl

The tab Idl allows to specify the code generated in Idl, it is visible only if Idl is set through the menu Languages
:

Menu : duplicate

The menu entry duplicate clone the extra member.

Menu : delete

The menu entry delete is only present when the extra member is not read-only.

Delete the extra member. After that it is possible to undelete it (from the browser) until you close the project :
obviously the deleted items are not saved !

Menu : mark

See mark

Menu : tools

Appears only when at least one plug-out is associated to the extra member. To apply a plug-out on the extra
member.

Previous : part/role

Next : class instance

154

Class instance
A class instance may be placed under a class view, a use case view or a use case.

A class instance can have sub part/role and composite diagram

Menus

The class menu appearing with a right mouse click on its representation is something like this, supposing the
instance not read-only nor deleted (see also menu in a diagram) :

Menu : add composite diagram

To add a new composite diagram.

Menu : add role/part instance

This entry is visible only when the type of the instance has role/part, to add an instance of one of them.

Menu : edit

edit allows to show/modify the instance properties. In case the class is read-only, the fields of the dialog are
also read-only.

It is not possible to change the type of an intance having sub part/role or composite diagram, even when they
are deleted (in that case save then reload the project to definitively remove the deleted sub elements).

Class dialog, tab Uml

The button class shows a menu proposing :

155

to select in the browser the class of the instance

if the instance is not read-only and does not have sub element and if a class is selected in the browser and
the instance does not have sub element : to set the class of the instance to be this class

if the view containing the class containing the instance is not read-only : to create a new class and to set
the attribute type to it

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Class dialog, tab Attributes

This tab allows to specify the value of the attributes of the instance, including the inherited ones :

Unfortunately an attribute can't be set several times, this is a problem when an attribute has a multiplicity
greater than 1.

Class dialog, tab Relations

This tab allows to specify the value of the relations of the instance, including the inherited ones:

Unfortunately a relation can't be set several times, this is a problem when a relation has a multiplicity greater
than 1.

Menu : duplicate

The menu entry duplicate clone the class instance, except the value of the relations.

Menu : referenced by

To know who reference the current class instance

Menu : mark

See mark

156

Menu : delete

The menu entry delete is only present when the class instance is not read-only.

Delete the instance and all the representation of it in the opened diagrams. After that it is possible to undelete
it (from the browser) until you close the project : obviously the deleted items are not saved !

Menu : tool

The menu entry tool is only present in case at least a plug-out may be applied on a class instance. The selected
tool is called and applied on the current class instance.

Drawing

Sequence diagrams

A class instance is drawn in a sequence diagram as a rectangle or an icon depending on the class's stereotype
and the drawing settings, the value of the attributes and relations don't appears:

A right mouse click on a class instance in a sequence diagram calls the following menu (supposing the instance
editable) :

Please refer to the chapter sequence diagram for more details.

Collaboration diagrams

A class instance is drawn in a collaboration diagram as a rectangle, the value of the attributes and relations
don't appears :

A right mouse click on a class instance in a collaboration diagram calls the following menu (supposing the
instance editable) :

157

Please refer to the chapter collaboration diagram for more details.

Object diagrams

A class instance is drawn in a collaboration diagram as a rectangle, the value of the attributes and relations
appears :

A sub composite diagram can be drawn in the dedicated compartment:

A right mouse click on a class instance in an object diagram calls the following menu (supposing the instance
editable) :

Menu : hide composite diagram

158

Only present when the instance already show one of its composite diagram.

Menu : show composite diagram

Only present when the instance has at least a composite diagram. When you show a composite diagram into
the instance representation this one is duplicated except the fragments (a priori is used to indicate whose
instance is described) and nothing appends if you delete the original composite diagram or change it. Use this
entry to update the composite diagram in the instance or change it by an other.

Please refer to the chapter object diagram for more details.

Previous : extra member

Next : state

159

State
Currently BOUML manages only the behavioral states.

A state represents a state machine, a sub machine, a composite state or a simple state. By definition each state
placed in a class view, a use case view or a use case is a state machine, and a state machine may contains sub
machines and states. By default at the creation time a state machine is stereotyped machine, and a sub
machine is stereotypes submachine.

Note : for reasons of simplification the final state is considered to be a pseudo state.

In the browser a state may contain sub states, regions, pseudo states, transitions, actions and state diagrams :

The state's properties will be exposed below.

Menus

The state menu appearing with a right mouse click on its representation in the browser is something like these,
supposing the state not read-only nor deleted (see also menu in a diagram) :

Menu : add ...

These entries of the menu allow to add a state diagram, a sub state or a region, the sub machine will have the
stereotype submachine. The state diagrams nested in a state are the ones for the state, this means that in case
you use this state diagram to create a new state or pseudo state these ones will be a child of the state in the
browser.

Menu : edit

edit allows to show/modify the state properties. In case the state is read-only, the fields of the dialog are also
read-only.

State dialog, tab Uml

160

The tab Uml is a global tab :

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it.

The specification allows to set the operation the state implements, this button can show a menu proposing
depending on the cases to select the current specification operation in the browser or to choose the operation
may be selected in the browser

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

A states without child except transitions and entry or exit pseudo states can be transformed into state
reference or allow to change the referenced state by an other one :

To add a connection point reference to a submachine state reference add an entry or exit point then edit it to
specify the reference.

State dialog, tab Ocl

The Ocl tab allows to specify the state behavior using the Ocl language, but in fact BOUML doesn't check the
syntax, this is just a convention.

161

State dialog, tab C++

This tab allows to specify the state behavior in C++, but in fact BOUML doesn't check the syntax, this is just a
convention.

State dialog, tab Java

This tab allows to specify the state behavior in Java, but in fact BOUML doesn't check the syntax, this is just a
convention.

Menu : duplicate

The menu entry duplicate clone the state without its children

Menu : extract it from X

The menu entry extract it from X is present when the stste is nested in X (perhaps X is itself nested in another
one, but it is not visible here). Choosing this entry the current stste became a children of the parent of X.

Menu : referenced by

To know who reference the current stste through a transition.

Menu : mark

162

See mark

Menu : delete

The menu entry delete is only present when the state is not read-only.

Delete the state and all its children, and all the representation of them in the opened diagrams. After that it is
possible to undelete them (from the browser) until you close the project : obviously the deleted items are not
saved !

Menu : tool

The menu entry tool is only present in case at least a plug-out may be applied on a state. The selected tool is
called and applied on the current state.

Default stereotypes

The dialog allowing to set the default stereotypes :

Drawing

A state is drawn in a diagram as a rectangle with rounded corners :

163

In case of a sub machine state reference the name of the referenced state is also written.

A right mouse click on a state in a diagram calls the following menu (supposing the state editable) :

Menu : show/hide decomposition indicator

To draw or not the icon indicating the state contains or not sub states (in theory in case they are not drawn).
Note Bouml follow your choice without checking if this has sense, except that the indicator can't be hidden in
case of a sub machine state reference.

Menu : edit drawing settings

These drawing settings concerns only the picture for which the menu is called.

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level. When you add a state in a diagram,
all the settings are set to default.

show activities :

Allows to show or not the state's activities in a compartment depending on the drawing language.

drawing language :

Allows to specify the used language in case the state's activities are shown.

drawing regions horizontally :

Allows to indicate if the regions are drawn horizontally or vertically, for instance :

164

Note : the regions are not visible while the state picture is too small.

State color :

To specify the fill color.

Menu : set associated diagram

set associated diagram allows to automatically open the current diagram when a double mouse click is made on
the state representation in a diagram or the browser. After that the only way to edit the state is to choose the
edit entry in the menu.

Menu tools :

Appears only when at least one plug-out is associated to the states. To apply a plug-out on the state.

Previous : class instance

Next : state action

165

State Actions
In the browser a state action may contain transitions

The state action's properties will be exposed below.

Menus

The state action menu appearing with a right mouse click on its representation in the browser is something like
these, supposing the action not read-only nor deleted (see also menu in a diagram) :

Menu : edit

edit allows to show/modify the action properties. In case the action is read-only, the fields of the dialog are also
read-only.

State action dialog, tab Uml

The tab Uml is a global tab :

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

State action dialog, tab Ocl

The Ocl tab allows to specify the state action expression using the Ocl language, but in fact BOUML doesn't
check the syntax, this is just a convention.

166

State action dialog, tab C++

This tab allows to specify the state action expression in C++, but in fact BOUML doesn't check the syntax, this
is just a convention.

State action dialog, tab Java

This tab allows to specify the state action expression in Java, but in fact BOUML doesn't check the syntax, this
is just a convention.

Menu : duplicate

The menu entry duplicate clone the state action without its children

Menu : referenced by

To know who reference the current state action through a transition.

Menu : mark

See mark

Menu : delete

The menu entry delete is only present when the state action is not read-only.

Delete the state action and all its children, and all the representation of them in the opened diagrams. After
that it is possible to undelete them (from the browser) until you close the project : obviously the deleted items
are not saved !

167

Menu : tool

The menu entry tool is only present in case at least a plug-out may be applied on a state action. The selected
tool is called and applied on the current state action.

Default stereotypes

The dialog allowing to set the default stereotypes :

Drawing

Depending on its stereotype a state action is drawn in a diagram as a rectangle, a convex pentagon or a
concave pentagon :

A right mouse click on a state action in a diagram calls the following menu (supposing the state action editable)
:

Menu : edit drawing settings

These drawing settings concerns only the picture for which the menu is called.

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level. When you add a state action in a
diagram, all the settings are set to default.

168

drawing language :

Allows to specify the used language showing the expression

show stereotype properties :

to indicate through a note the (non empty) value of the stereotype properties in case the action is stereotyped
by a stereotype part of a profile. By default the stereotype properties are hidden.

State action color :

To specify the fill color.

Menu tools :

Appears only when at least one plug-out is associated to the state actions. To apply a plug-out on the state
action.

Previous : state

Next : pseudo state

169

Pseudo State
Currently BOUML manages only the behavioral states.

The pseudo states are :

final state (for reasons of simplification)

initial

deep history

shallow history

join

fork

junction

choice

entry point

exit point

terminate

In the browser a pseudo state may contain transitions (when this is legal) :

The pseudo state's properties will be exposed below.

Menus

The pseudo state menu appearing with a right mouse click on its representation in the browser is something
like these, supposing the pseudo state not read-only nor deleted (see also menu in a diagram) :

Menu : edit

edit allows to show/modify the pseudo state properties. In case the pseudo state is read-only, the fields of the
dialog are also read-only.

170

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Menu : duplicate

The menu entry duplicate clone the pseudo state without its children

Menu : referenced by

To know who reference the current pseudo state through a transition.

Menu : mark

See mark

Menu : delete

The menu entry delete is only present when the pseudo state is not read-only.

Delete the pseudo state and all its children, and all the representation of them in the opened diagrams. After
that it is possible to undelete them (from the browser) until you close the project : obviously the deleted items
are not saved !

Menu : tool

The menu entry tool is only present in case at least a plug-out may be applied on a pseudo state of this kind.
The selected tool is called and applied on the current pseudo state.

Default stereotypes

The dialog allowing to set the default stereotypes :

171

Drawing

A pseudo state is drawn in a diagram depending on its kind :

A right mouse click on a pseudo state in a diagram calls the following menu (supposing the pseudo state
editable) :

Menu tools :

Appears only when at least one plug-out is associated to the pseudo state kind. To apply a plug-out on the
pseudo state.

Previous : state action

Next : activity

172

Activity

Activity

In the browser an activity is placed in a class view, a use case view or a use case, and may contain parameters,
expansion and interruptible activity regions, activity partitions, activity nodes (activity action, object node or
control node) and activity diagrams :

The activity's properties are exposed below.

Activity parameter

To simplify in Bouml a parameter is both a UML parameter and a UML parameter node, this means that the
properties of a parameter also contains the properties of a parameter node.

In the browser a parameter is placed under its activity and may contains flows. A flow can't directly connect
two parameters, a parameter is connected through a flow to an expansion node or an activity node (activity
action, object node or control node) whose must be in the activity owing the parameter.

Note : parameter sets are defined on actions, see actions.

Activity Menus

The activity menu appearing with a right mouse click on its representation in the browser is something like
these, supposing the activity not read-only nor deleted (see also menu in a diagram) :

Menu : add ...

173

These entries of the menu allow to add as activity diagram, a parameter, a region or an activity node (activity
action, object node or control node). The activity diagrams nested in a activity are the ones for the activity, this
means that in case you use this activity diagram to create a new region or an activity node these ones will be a
child of the activity in the browser.

Menu : edit

edit allows to show/modify the activity properties. In case the activity is read-only, the fields of the dialog are
also read-only.

activity dialog, tab Uml

The tab Uml is a global tab :

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it.

The specification allows to set the operation the activity implements, this button can show a menu proposing
depending on the cases to select the current specification operation in the browser or to choose the operation
may be selected in the browser

Read-only, single execution and active are the standard UML flags.

The editor button visible above and associated here to the description and constraint, allows to edit the
description and constraint in an other window, or to call an external editor (for instance Xcoral) specified
through the environment dialog. Note that this external editor have to create an own window, its parameter is
the pathname of the file containing the description or constraint, its execution is done in parallel with BOUML
which looks each second at the file contents to get the new definition until the dialog is closed (I do not like
very much this polling but this works even QT isn't compiled with the thread support).

activity dialog, tab Ocl

The Ocl tab allows to specify the pre and post conditions using the Ocl language, but in fact BOUML doesn't
check the syntax, this is just a convention.

174

activity dialog, tab C++

This tab allows to specify the pre and post conditions in C++, but in fact BOUML doesn't check the syntax, this
is just a convention.

activity dialog, tab Java

This tab allows to specify the pre and post conditions in Java, but in fact BOUML doesn't check the syntax, this
is just a convention.

Menu : duplicate

The menu entry duplicate clone the activity without its children

Menu : referenced by

To know who reference the current activity through a dependency or a call behavior action.

175

Menu : mark

See mark

Menu : delete

The menu entry delete is only present when the activity is not read-only (I speak about the file permission, not
about the read-only UML property)

Delete the activity and all its children, and all the representation of them in the opened diagrams. After that it
is possible to undelete them (from the browser) until you close the project : obviously the deleted items are not
saved !

Menu : tool

The menu entry tool is only present in case at least a plug-out may be applied on an activity. The selected tool
is called and applied on the current activity.

Parameter Menus

The parameter menu appearing with a right mouse click on its representation in the browser is something like
these, supposing the parameter not read-only nor deleted (see also menu in a diagram) :

Menu : edit

edit allows to show/modify the parameter properties. In case the parameter is read-only, the fields of the dialog
are also read-only.

parameter dialog, tab Uml

The tab Uml is a global tab :

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it.

The proposed types are the non class types defined in the first tab of the generation settings, more all the
classes defined in the project (with their localization to distinguish synonymous classes). You are not limited to
the proposed list, and any form (even invalid for the target language(s)) may be given. The button type: shows

176

a menu proposing :

if the current type of the parameter is a class : to select this class in the browser

if the parameter is not read-only and if a class is selected in the browser : to set the type to be this class

The direction, multiplicity, ordering, effect, in state, default value, is control, unique, exception and
stream are the standard UML properties. The flags exception and stream are exclusive, choose standard to
be not exception nor stream.

The editor button visible above and associated here to the default value and description, allows to edit the
default value or the description in an other window, or to call an external editor (for instance Xcoral) specified
through the environment dialog. Note that this external editor have to create an own window, its parameter is
the pathname of the file containing the description, its execution is done in parallel with BOUML which looks
each second at the file contents to get the new definition until the dialog is closed (I do not like very much this
polling but this works even QT isn't compiled with the thread support).

parameter dialog, tab Ocl

The Ocl tab allows to specify the selection using the Ocl language, but in fact BOUML doesn't check the syntax,
this is just a convention.

parameter dialog, tab C++

This tab allows to specify the selection in C++, but in fact BOUML doesn't check the syntax, this is just a
convention.

parameter dialog, tab Java

177

This tab allows to specify the selection in Java, but in fact BOUML doesn't check the syntax, this is just a
convention.

Menu : duplicate

The menu entry duplicate clone the parameter without its children

Menu : referenced by

To know who reference the current parameter through flow

Menu : mark

See mark

Menu : delete

The menu entry delete is only present when the parameter is not read-only

Delete the parameter and all its children, and all the representation of them in the opened diagrams. After that
it is possible to undelete them (from the browser) until you close the project : obviously the deleted items are
not saved !

Menu : tool

The menu entry tool is only present in case at least a plug-out may be applied on an parameter. The selected
tool is called and applied on the current parameter.

Default stereotypes

The dialog allowing to set the default activity and parameter stereotypes :

178

Activity Drawing

A activity is drawn in a diagram as a rectangle with rounded corners :

Note : the activity sub elements are forced to be inside their activity rectangle,. So, when you want to draw in a
diagram both an activity and some of its elements I strongly recommend to add first the activity then the
elements, else when you add the activity the elements may be moved to be inside the rectangle broking their
pretty respective positions.

A right mouse click on a activity in a diagram calls the following menu (supposing the activity editable) :

179

Menu : edit drawing settings

These drawing settings concerns only the picture for which the menu is called.

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level. When you add a activity in a diagram,
all the settings are set to default.

show conditions :

Allows to show or not the activity's pre and post conditions depending on the drawing language. Note : on an
upper level, for instance at the diagram level, this drawing follow the value of the drawing show info notes. In
the diagram above show conditions is true, if false the drawing become :

drawing language :

Allows to specify the used language in case the activity's pre and post conditions are shown.

show stereotype properties :

to indicate through a note the (non empty) value of the stereotype properties in case the activit is stereotyped
by a stereotype part of a profile. By default the stereotype properties are hidden.

activity color :

180

To specify the fill color.

Menu : set associated diagram

set associated diagram allows to automatically open the current diagram when a double mouse click is made on
the activity representation in a diagram or the browser. After that the only way to edit the activity is to choose
the edit entry in the menu.

Menu tools :

Appears only when at least one plug-out is associated to the activitys. To apply a plug-out on the activity.

Parameter Drawing

A parameter node is drawn in a diagram as a rectangle, with the indication indicating if the parameter is a
stream or an exception :

A right mouse click on a parameter in a diagram calls the following menu (supposing the parameter editable) :

Menu : edit drawing settings

These drawing settings concerns only the picture for which the menu is called.

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level. When you add a parameter in a
diagram, all the settings are set to default.

Menu : select class in browser

Appears when the type of the parameter is a class, to select it in the browser.

Previous : pseudo state

181

Next : activity region

182

Activity region
There are two kind of regions : expansion region and interruptible region, both may be placed under an activity
or a region.

In the browser an expansion region may contain sub activity regions, expansion nodes and activity nodes
(activity action, object node or control node)

In the browser an interruptible region may contain sub activity regions and activity nodes (activity action,
object node or control node)

The region's properties are exposed below.

Expansion region menus

The expansion region menu appearing with a right mouse click on its representation in the browser is
something like these, supposing the region not read-only nor deleted (see also menu in a diagram) :

Menu : add ...

These entries of the menu allow to add an expansion node, a nested region or an activity node (activity action,
object node or control node)

Menu : edit

edit allows to show/modify the region properties. In case the region is read-only, the fields of the dialog are also
read-only.

Expansion region dialog, tab Uml

183

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it.

The mode and the flag must isolate are the standard UML information.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Menu : duplicate

The menu entry duplicate clone the region without its children

Menu : set it nested in the region above

The menu entry set it nested in the region above is present when the previous element in the browser is a
region, allows to move the region inside

Menu : extract it from current parent region

The menu entry extract it from current parent region is present when the region is nested in an other one,
allows to extract the region and place it in its grand parent..

Menu : mark

See mark

Menu : delete

The menu entry delete is only present when the region is not read-only.

Delete the region and all its children, and all the representation of them in the opened diagrams. After that it is
possible to undelete them (from the browser) until you close the project : obviously the deleted items are not
saved !

Menu : tool

The menu entry tool is only present in case at least a plug-out may be applied on an expansion region. The
selected tool is called and applied on the current region.

Interruptible region menus

The interruptible region menu appearing with a right mouse click on its representation in the browser is
something like these, supposing the region not read-only nor deleted (see also menu in a diagram) :

184

Menu : add ...

These entries of the menu allow to add a nested region or an activity node (activity action, object node or
control node)

Menu : edit

edit allows to show/modify the region properties. In case the region is read-only, the fields of the dialog are also
read-only.

Interruptible region dialog, tab Uml

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Menu : duplicate

The menu entry duplicate clone the region without its children

Menu : set it nested in the region above

The menu entry set it nested in the region above is present when the previous element in the browser is a
region, allows to move the region inside

Menu : extract it from current parent region

The menu entry extract it from current parent region is present when the region is nested in an other one,
allows to extract the region and place it in its grand parent..

Menu : mark

See mark

185

Menu : delete

The menu entry delete is only present when the region is not read-only.

Delete the region and all its children, and all the representation of them in the opened diagrams. After that it is
possible to undelete them (from the browser) until you close the project : obviously the deleted items are not
saved !

Menu : tool

The menu entry tool is only present in case at least a plug-out may be applied on an interruptible region. The
selected tool is called and applied on the current region.

Expansion node menus

The expansion node menu appearing with a right mouse click on its representation in the browser is something
like these, supposing the node not read-only nor deleted (see also menu in a diagram) :

Menu : edit

edit allows to show/modify the expansion node properties. In case the node is read-only, the fields of the dialog
are also read-only.

Expansion node dialog, tab Uml

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it.

The proposed types are the non class types defined in the first tab of the generation settings, more all the
classes defined in the project (with their localization to distinguish synonymous classes). You are not limited to
the proposed list, and any form (even invalid for the target language(s)) may be given. The button type: shows
a menu proposing :

if the current type of the expansion node is a class : to select this class in the browser

if the expansion node is not read-only and if a class is selected in the browser : to set the type to be this
class

The multiplicity, ordering, in state, and is control are the standard UML properties.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note

186

that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Expansion node dialog, tab Ocl

The Ocl tab allows to specify the selection using the Ocl language, but in fact BOUML doesn't check the syntax,
this is just a convention.

Expansion node dialog, tab C++

This tab allows to specify the selection in C++, but in fact BOUML doesn't check the syntax, this is just a
convention.

Expansion node dialog, tab Java

This tab allows to specify the selection in Java, but in fact BOUML doesn't check the syntax, this is just a
convention.

187

Menu : duplicate

The menu entry duplicate clone the expansion node without its children

Menu : delete

The menu entry delete is only present when the region is not read-only.

Delete the region and all its children, and all the representation of them in the opened diagrams. After that it is
possible to undelete them (from the browser) until you close the project : obviously the deleted items are not
saved !

Menu : referenced by

To know who reference the current parameter through flow

Menu : mark

See mark

Menu : tool

The menu entry tool is only present in case at least a plug-out may be applied on an interruptible region. The
selected tool is called and applied on the current region.

Default stereotypes

The dialog allowing to set the default stereotypes :

188

Expansion region drawing

An expansion region is drawn in a diagram as a dashed rectangle with rounded corners, with the indication of
the mode :

A right mouse click on a the region in a diagram calls the following menu (supposing the region editable) :

Menu : add expansion node

These entries of the menu allow to add an expansion node.

Menu : edit drawing settings

These drawing settings concerns only the picture for which the menu is called.

189

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level. When you add a region in a diagram,
all the settings are set to default.

To specify the fill color.

Menu : set associated diagram

set associated diagram allows to automatically open the current diagram when a double mouse click is made on
the region representation in a diagram or the browser. After that the only way to edit the region is to choose
the edit entry in the menu.

Menu tools :

Appears only when at least one plug-out is associated to the regions. To apply a plug-out on the region.

Interruptible region drawing

An interruptible activity region is drawn in a diagram as a dashed rectangle with rounded corners :

A right mouse click on a region in a diagram calls the following menu (supposing the region editable) :

Menu : edit drawing settings

These drawing settings concerns only the picture for which the menu is called.

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level. When you add a region in a diagram,
all the settings are set to default.

190

To specify the fill color.

Menu : set associated diagram

set associated diagram allows to automatically open the current diagram when a double mouse click is made on
the region representation in a diagram or the browser. After that the only way to edit the region is to choose
the edit entry in the menu.

Menu tools :

Appears only when at least one plug-out is associated to the regions. To apply a plug-out on the region.

Expansion node drawing

A expansion node is drawn in a diagram as pins :

A right mouse click on as expansion node in a diagram calls the following menu (supposing the node editable) :

Menu : edit drawing settings

These drawing settings concerns only the picture for which the menu is called.

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level. When you add a node in a diagram,
all the settings are set to default.

To specify the fill color.

Menu tools :

Appears only when at least one plug-out is associated to the expansion nodes. To apply a plug-out on the node.

191

Previous : activity

Next : activity partition

192

Activity partition
In the browser a partition can be placed in an activity or an other partition, they can contain sub-partitions

The partitions's properties are exposed below.

Partition menus

The partition menu appearing with a right mouse click on its representation in the browser is something like
these, supposing the partition not read-only nor deleted (see also menu in a diagram) :

Menu : new sub activity partition

These entries of the menu allow to add a nested partition

Menu : edit

edit allows to show/modify the partition properties. In case the partition is read-only, the fields of the dialog are
also read-only.

Partition dialog, tab Uml

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it.

The is dimension and is external flags and represents are the standard UML information. To unset
represents just choose the empty line in the proposed list, to set it to a given element after calling the editor
select the desired element in the browser or mark it (alone) then use the button represents:

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

193

Menu : duplicate

The menu entry duplicate clone the region without its children

Menu : extract it from current parent partition

The menu entry extract it from current parent partition is present when the partition is nested in an other one,
allows to extract the partition and place it in its grand parent..

Menu : mark

See mark

Menu : delete

The menu entry delete is only present when the partition is not read-only.

Delete the partition and all its children, and all the representation of them in the opened diagrams. After that it
is possible to undelete them (from the browser) until you close the project : obviously the deleted items are not
saved !

Menu : tool

The menu entry tool is only present in case at least a plug-out may be applied on a partition. The selected tool
is called and applied on the current partition.

Default stereotypes

The dialog allowing to set the default stereotypes :

Partition drawing

A partition is drawn in a diagram as a rectangle with a header indicating the name or the partition and its

194

stereotype. When the partition is unnamed but represents an element the name of this element is show. The
stereotype external is written when the partition is external and doesn't have a stereotype. A partition can be
drawn vertically or horizontally :

A right mouse click on a the partition in a diagram calls the following menu (supposing the partition editable) :

Menu : draw horizontally / vertically

To turn the drawing of the partition, the sub partitions will also turn

Menu : edit drawing settings

These drawing settings concerns only the picture for which the menu is called.

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level. When you add a partition in a
diagram, all the settings are set to default.

To specify the fill color.

Menu : set associated diagram

set associated diagram allows to automatically open the current diagram when a double mouse click is made on
the partition representation in a diagram or the browser. After that the only way to edit the partition is to
choose the edit entry in the menu.

Menu tools :

Appears only when at least one plug-out is associated to the partitions. To apply a plug-out on the partition.

195

Previous : activity region

Next : activity action

196

Activity Actions
An activity action is an activity node. In the browser an activity action is placed in an activity or an activity
region, and may contain pins, parameter sets, and flows :

There are several kinds of action, Bouml doesn't propose all the kinds defined in UML but the main ones :
opaque, accept event, read variable value, clear variable value, write variable value, add variable value, remove
variable value, call behavior, call operation, send object, send signal, broadcast signal, unmarshall and value
specification.

The pins are added automatically by Bouml depending on the kind of the action, for the call behavior and call
operation and actions on a variable the pins are set when the behavior/operation/variable is set or changed.
When something is changed all the current pins are removed then new ones may be added. Note that you may
change or delete the default pins or add new ones, and the pins are not changed when the corresponding
behavior/operation/variable is modified.

The parameter sets are defined on the actions and have sense only for call behavior action when the behavior is
an activity (but this is not checked by Bouml), so a parameter set contains pins corresponding to parameters.
To define parameter sets on action rather than activity allows you to use them as you want.

The activity action's and pin's properties are exposed below.

Activity action menus

The activity action menu appearing with a right mouse click on its representation in the browser is something
like these, supposing the action not read-only nor deleted (see also menu in a diagram) :

Menu : add ...

To add a pin or a parameter set.

Menu : edit

edit allows to show/modify the action properties. In case the action is read-only, the fields of the dialog are also
read-only.

The aspect of the dialog depend on the kind of action :

Activity opaque action dialog, tab Uml

The tab Uml is a global tab :

197

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it.

It is possible to change the kind of the action, this modify the other editor tabs.

The editor button visible above and associated here to the description/constraint, allows to edit the
description/constraint in an other window, or to call an external editor (for instance Xcoral) specified through
the environment dialog. Note that this external editor have to create an own window, its parameter is the
pathname of the file containing the description/constraint, its execution is done in parallel with BOUML which
looks each second at the file contents to get the new definition until the dialog is closed (I do not like very
much this polling but this works even QT isn't compiled with the thread support).

Activity opaque action dialog, tab Ocl

The Ocl tab allows to specify the activity action behavior and the pre and post condition using the Ocl
language, but in fact BOUML doesn't check the syntax, this is just a convention.

Activity opaque action dialog, tab C++

This tab allows to specify the activity action behavior and the pre and post condition in C++, but in fact
BOUML doesn't check the syntax, this is just a convention.

198

Activity opaque action dialog, tab Java

This tab allows to specify the activity action behavior and the pre and post condition in Java, but in fact BOUML
doesn't check the syntax, this is just a convention.

Activity accept event action dialog, tab Uml

Activity accept event action dialog, tab Ocl

The Ocl tab allows to specify the trigger and the pre and post condition using the Ocl language, but in fact
BOUML doesn't check the syntax, this is just a convention.

199

Unmarshall is the standard UML property, time event allows to indicate is the event is a timer to choose
between the two representations.

Activity accept event action dialog, tab C++

This tab allows to specify the trigger and the pre and post condition in C++, but in fact BOUML doesn't check
the syntax, this is just a convention.

Activity accept event dialog, tab Java

This tab allows to specify the trigger and the pre and post condition in Java, but in fact BOUML doesn't check
the syntax, this is just a convention.

Activity read variable value action dialog, tab Uml

200

Activity read variable value action dialog, tab Ocl

The Ocl tab allows to specify the variable (class attribute or relation) and the pre and post condition using the
Ocl language, but in fact BOUML doesn't check the syntax, this is just a convention.

The button variable shows a menu proposing :

if the current variable is set : to select this attribute or relation in the browser

if the action is not read-only and if a class attribute or relation is selected in the browser : to set the
variable to be the selected element

if the class is not read-only : to create a new attribute and to choose it

Activity read variable value action dialog, tab C++

This tab allows to specify the pre and post condition in C++, but in fact BOUML doesn't check the syntax, this
is just a convention.

201

Activity read variable value action dialog, tab Java

This tab allows to specify the pre and post condition in Java, but in fact BOUML doesn't check the syntax, this
is just a convention.

Activity clear variable value action
Activity write variable value action
Activity add variable value action
Activity remove variable value action

The dialog is equals to the read variable value action case

Activity call behavior action dialog, tab Uml

Activity call behavior action dialog, tab Ocl

202

The Ocl tab allows to specify the behavior (a state or an activity) and the pre and post condition using the Ocl
language, but in fact BOUML doesn't check the syntax, this is just a convention.

The button behavior shows a menu proposing :

if the current behavior is set : to select this class in the browser

if the action is not read-only and if a state or activity is selected in the browser : to set the behavior to be
the selected element

if the view containing the activity is not read-only : to create an activity or a state machine and to choose it

Activity call behavior action dialog, tab C++

This tab allows to specify the pre and post condition in C++, but in fact BOUML doesn't check the syntax, this
is just a convention.

Activity call behavior action dialog, tab Java

This tab allows to specify the pre and post condition in Java, but in fact BOUML doesn't check the syntax, this
is just a convention.

203

Activity call operation action dialog, tab Uml

Activity call operation action dialog, tab Ocl

The Ocl tab allows to specify the operation and the pre and post condition using the Ocl language, but in fact
BOUML doesn't check the syntax, this is just a convention.

The button operation shows a menu proposing :

if the current operation is set : to select this class in the browser

if the action is not read-only and if an operation selected in the browser : to set the operation to be the
selected one

if the class is not read-only : to create an operation and to choose it

204

Activity call operation action dialog, tab C++

This tab allows to specify the pre and post condition in C++, but in fact BOUML doesn't check the syntax, this
is just a convention.

Activity call operation action dialog, tab Java

This tab allows to specify the pre and post condition in Java, but in fact BOUML doesn't check the syntax, this
is just a convention.

Activity send object action dialog, tab Uml

Activity send object action dialog, tab Ocl

The Ocl tab allows to specify the pre and post condition using the Ocl language, but in fact BOUML doesn't

205

check the syntax, this is just a convention.

Activity send object action dialog, tab C++

This tab allows to specify the pre and post condition in C++, but in fact BOUML doesn't check the syntax, this
is just a convention.

Activity send object action dialog, tab Java

This tab allows to specify the pre and post condition in Java, but in fact BOUML doesn't check the syntax, this
is just a convention.

Activity accept call action dialog
Activity reply action dialog

206

The dialog is similar to the accept event action case

Activity create object action dialog, tab Uml

Activity create object action dialog, tab Ocl

The Ocl tab allows to specify the created object classifier and pre and post condition using the Ocl language,
but in fact BOUML doesn't check the syntax, this is just a convention.

Activity create object action dialog, tab C++

This tab allows to specify the pre and post condition in C++, but in fact BOUML doesn't check the syntax, this
is just a convention.

207

Activity create object action dialog, tab Java

This tab allows to specify the pre and post condition in Java, but in fact BOUML doesn't check the syntax, this
is just a convention.

Activity destroy object action dialog, tab Uml

Activity destroy object action dialog, tab Ocl

The Ocl tab allows to specify flags and pre and post condition using the Ocl language, but in fact BOUML
doesn't check the syntax, this is just a convention.

Activity destroy object action dialog, tab C++

208

This tab allows to specify the pre and post condition in C++, but in fact BOUML doesn't check the syntax, this
is just a convention.

Activity destroy object action dialog, tab Java

This tab allows to specify the pre and post condition in Java, but in fact BOUML doesn't check the syntax, this
is just a convention.

Activity test identity action dialog, tab Uml

Activity test identity action dialog, tab Ocl

The Ocl tab allows to specify the pre and post condition using the Ocl language, but in fact BOUML doesn't

209

check the syntax, this is just a convention.

Activity test identity action dialog, tab C++

This tab allows to specify the pre and post condition in C++, but in fact BOUML doesn't check the syntax, this
is just a convention.

Activity test identity action dialog, tab Java

This tab allows to specify the pre and post condition in Java, but in fact BOUML doesn't check the syntax, this
is just a convention.

Activity raise exception action dialog, tab Uml

210

Activity raise exception action dialog, tab Ocl

The Ocl tab allows to specify the pre and post condition using the Ocl language, but in fact BOUML doesn't
check the syntax, this is just a convention.

Activity raise exception action dialog, tab C++

This tab allows to specify the pre and post condition in C++, but in fact BOUML doesn't check the syntax, this
is just a convention.

Activity raise exception action dialog, tab Java

This tab allows to specify the pre and post condition in Java, but in fact BOUML doesn't check the syntax, this
is just a convention.

211

Activity reduce action dialog, tab Uml

Activity reduce action dialog, tab Ocl

The Ocl tab allows to specify the pre and post condition using the Ocl language, but in fact BOUML doesn't
check the syntax, this is just a convention.

Activity reduce action dialog, tab C++

This tab allows to specify the pre and post condition in C++, but in fact BOUML doesn't check the syntax, this
is just a convention.

212

Activity reduce action dialog, tab Java

This tab allows to specify the pre and post condition in Java, but in fact BOUML doesn't check the syntax, this
is just a convention.

Menu : duplicate

The menu entry duplicate clone the activity action without its children

Menu : referenced by

To know who reference the current activity action through a flow.

Menu : mark

See mark

Menu : delete

The menu entry delete is only present when the activity action is not read-only.

Delete the activity action and all its children, and all the representation of them in the opened diagrams. After
that it is possible to undelete them (from the browser) until you close the project : obviously the deleted items
are not saved !

Menu : tool

The menu entry tool is only present in case at least a plug-out may be applied on a activity action. The selected
tool is called and applied on the current activity action.

213

Pin menus

The pin menu appearing with a right mouse click on its representation in the browser is something like these,
supposing the pin not read-only nor deleted (see also menu in a diagram) :

Menu : edit

edit allows to show/modify the pin properties. In case the pin is read-only, the fields of the dialog are also read-
only.

Pin dialog, tab Uml

The tab Uml is a global tab :

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it.

The proposed types are the non class types defined in the first tab of the generation settings, more all the
classes defined in the project (with their localization to distinguish synonymous classes). You are not limited to
the proposed list, and any form (even invalid for the target language(s)) may be given. The button type: shows
a menu proposing :

if the current type of the pin is a class : to select this class in the browser

if the pin is not read-only and if a class is selected in the browser : to set the type to be this class

if the view containing the activity is not read-only : to create a class and to choose it

The direction, multiplicity, ordering, effect, in state, default value, is control, unique, exception and
stream are the standard UML properties. The flags exception and stream are exclusive, choose standard to
be not exception nor stream.

The editor button visible above and associated here to the default value and description, allows to edit the
default value or the description in an other window, or to call an external editor (for instance Xcoral) specified
through the environment dialog. Note that this external editor have to create an own window, its parameter is
the pathname of the file containing the description, its execution is done in parallel with BOUML which looks
each second at the file contents to get the new definition until the dialog is closed (I do not like very much this
polling but this works even QT isn't compiled with the thread support).

Pin dialog, tab Ocl

The Ocl tab allows to specify the selection using the Ocl language, but in fact BOUML doesn't check the syntax,

214

this is just a convention.

Menu : duplicate

The menu entry duplicate clone the pin without its children

Menu : referenced by

To know who reference the current pin through a flow.

Menu : mark

See mark

Menu : delete

The menu entry delete is only present when the pin is not read-only.

Delete the pin and all its children, and all the representation of them in the opened diagrams. After that it is
possible to undelete them (from the browser) until you close the project : obviously the deleted items are not
saved !

Menu : tool

The menu entry tool is only present in case at least a plug-out may be applied on a pin. The selected tool is
called and applied on the current pin.

Parameter set menus

The parameter set menu appearing with a right mouse click on its representation in the browser is something
like these, supposing the set not read-only nor deleted (see also menu in a diagram) :

Menu : edit

edit allows to show/modify the parameter set properties. In case the set is read-only, the fields of the dialog are
also read-only.

Parameter set dialog, tab Uml

The tab Uml is a global tab :

215

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it.

The editor button visible above and associated here to the default value and description, allows to edit the
default value or the description in an other window, or to call an external editor (for instance Xcoral) specified
through the environment dialog. Note that this external editor have to create an own window, its parameter is
the pathname of the file containing the description, its execution is done in parallel with BOUML which looks
each second at the file contents to get the new definition until the dialog is closed (I do not like very much this
polling but this works even QT isn't compiled with the thread support).

Pin dialog, tab parameters

Allows to specify the pins part of the parameter set

Menu : duplicate

The menu entry duplicate clone the pin without its children

Menu : mark

See mark

Menu : delete

The menu entry delete is only present when the pin is not read-only.

Delete the pin and all its children, and all the representation of them in the opened diagrams. After that it is
possible to undelete them (from the browser) until you close the project : obviously the deleted items are not
saved !

Menu : tool

The menu entry tool is only present in case at least a plug-out may be applied on a parameter set. The selected
tool is called and applied on the current set.

Default stereotypes

The dialog allowing to set the default stereotypes :

216

Activity action drawing

Depending on its stereotype a activity action is drawn in a diagram as a rectangle, a convex pentagon or a
concave pentagon :

By default the name of an action is its kind, this one is written inside the action, except if the action is an
opaque action and you ask to see the code.

If the action has pre and/or post condition these ones are show (except if you ask to not show the conditions) :

show stereotype properties : to indicate through a note the (non empty) value of the stereotype properties in
case the package is stereotyped by a stereotype part of a profile. By default the stereotype properties are
hidden.

A right mouse click on a activity action in a diagram calls the following menu (supposing the activity action
editable) :

217

Menu :add pin

To add a pin

Menu : edit drawing settings

These drawing settings concerns only the picture for which the menu is called.

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level. When you add a activity action in a
diagram, all the settings are set to default.

show opaque definition :

To write an opaque action's name or its behavior

show information note :

to show or not the conditions

drawing language :

Allows to specify the used language used to indicate opaque action behavior or the conditions

show stereotype properties :

to indicate through a note the (non empty) value of the stereotype properties in case the action is stereotyped
by a stereotype part of a profile. By default the stereotype properties are hidden.

action color :

To specify the fill color.

Menu select X in browser :

Appears only when the action is associated to a variable, behavior or an operation, to select this one the the
browser

Menu select associated diagram from behavior :

218

Appears only when the action is a call behavior and the behavior (an activity or a state) has an associated
diagram, set this last to be the diagram associated to the action, this allows to goes to the diagram associated
to the behavior on a double click on the action.

Menu tools :

Appears only when at least one plug-out is associated to the activity actions. To apply a plug-out on the activity
action.

Pin drawing

A Pin is drawn as a small square, with the stream or exception indication :

A right mouse click on a pin in a diagram calls the following menu (supposing the pin editable) :

Menu : edit drawing settings

These drawing settings concerns only the picture for which the menu is called.

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level. When you add a pin in a diagram, all
the settings are set to default.

To specify the fill color.

Menu : select class in browser

Appears when the type of the pin is a class, to select it in the browser.

Menu tools :

Appears only when at least one plug-out is associated to the pins. To apply a plug-out on the pin.

Parameter set drawing

A parameter set is a rectangle drawn around the corresponding pins, it is highly recommended to place the
pins on the same are to have a pretty result:

219

A right mouse click on a pin in a diagram calls the following menu (supposing the pin editable) :

Menu : edit drawing settings

These drawing settings concerns only the picture for which the menu is called.

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level. When you add a set in a diagram, all
the settings are set to default.

To specify the fill color.

Menu tools :

Appears only when at least one plug-out is associated to the parameter sets. To apply a plug-out on the set.

Previous : activity region

Next : activity object

220

Activity object
Note : pins are activity object, they are described with the activity actions.

In the browser an activity object is placed in an activity or an activity region, and may contain flows :

The activity object's properties are exposed below.

Menus

The activity object menu appearing with a right mouse click on its representation in the browser is something
like these, supposing the object not read-only nor deleted (see also menu in a diagram) :

Menu : edit

edit allows to show/modify the object properties. In case the object is read-only, the fields of the dialog are also
read-only.

Activity object dialog, tab Uml

The tab Uml is a global tab :

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it.

The proposed types are the non class types defined in the first tab of the generation settings, more all the
classes defined in the project (with their localization to distinguish synonymous classes). You are not limited to
the proposed list, and any form (even invalid for the target language(s)) may be given. The button type: shows
a menu proposing :

if the current type of the object is a class : to select this class in the browser

if the object is not read-only and if a class is selected in the browser : to set the type to be this class

221

The multiplicity, ordering, in state and is control are the standard UML properties.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Activity object dialog, tab Ocl

The Ocl tab allows to specify the selection using the Ocl language, but in fact BOUML doesn't check the syntax,
this is just a convention.

Activity object dialog, tab C++

This tab allows to specify the selection in C++, but in fact BOUML doesn't check the syntax, this is just a
convention.

Activity object dialog, tab Java

This tab allows to specify the selection in Java, but in fact BOUML doesn't check the syntax, this is just a
convention.

Menu : duplicate

222

The menu entry duplicate clone the activity object without its children

Menu : referenced by

To know who reference the current activity object through a transition.

Menu : mark

See mark

Menu : delete

The menu entry delete is only present when the activity object is not read-only.

Delete the activity object and all its children, and all the representation of them in the opened diagrams. After
that it is possible to undelete them (from the browser) until you close the project : obviously the deleted items
are not saved !

Menu : tool

The menu entry tool is only present in case at least a plug-out may be applied on a activity object. The selected
tool is called and applied on the current activity object.

Default stereotypes

The dialog allowing to set the default stereotypes :

Drawing

An activity object is drawn in a diagram as a rectangle, with its stereotype, it type (if set) and its selection
(except if you ask to not show it) :

223

If the activity object is stereotyped by a stereotype part of a profile and this stereotype has an associated icon,
this icon will be used unchanged when the scale is 100% else it is resized.

A right mouse click on a activity object in a diagram calls the following menu (supposing the activity object
editable) :

Menu : edit drawing settings

These drawing settings concerns only the picture for which the menu is called.

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level. When you add a activity object in a
diagram, all the settings are set to default.

write name:type horizontally:

useful when the object has a name and a type, to write them on the same line of on two lines

show information note :

to show or not the selection

drawing language :

Allows to specify the used language showing the expression

show stereotype properties :

to indicate through a note the (non empty) value of the stereotype properties in case the object is stereotyped
by a stereotype part of a profile. By default the stereotype properties are hidden.

224

Class instance color :

To specify the fill color.

Menu tools :

Appears only when at least one plug-out is associated to the activity objects. To apply a plug-out on the activity
object.

Previous : activity action

Next : activity control node

225

Activity control node
The activity control nodes are :

 initial

 final

 flow final

 merge

 decision

 fork

 join

In the browser a activity control node is placed under its activity or region and may contain flows (when this is
legal).

The activity control node's properties will be exposed below.

Menus

The activity control node menu appearing with a right mouse click on its representation in the browser is
something like these, supposing the activity control node not read-only nor deleted (see also menu in a
diagram) :

Menu : edit

edit allows to show/modify the activity control node properties. In case the activity control node is read-only,
the fields of the dialog are also read-only.

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Menu : duplicate

226

The menu entry duplicate clone the activity control node without its children

Menu : referenced by

To know who reference the current activity control node through a transition.

Menu : mark

See mark

Menu : delete

The menu entry delete is only present when the activity control node is not read-only.

Delete the activity control node and all its children, and all the representation of them in the opened diagrams.
After that it is possible to undelete them (from the browser) until you close the project : obviously the deleted
items are not saved !

Menu : tool

The menu entry tool is only present in case at least a plug-out may be applied on a activity control node of this
kind. The selected tool is called and applied on the current activity control node.

Default stereotypes

The dialog allowing to set the default stereotypes :

Drawing

A activity control node is drawn in a diagram depending on its kind :

227

A right mouse click on a activity control node in a diagram calls the following menu (supposing the activity
control node editable) :

Previous : activity object

Next : flow

228

Flow
We consider in this chapter both the control flows and the object flows, there are not distinguished by a given
flag but by their usage. When you try to create a flow through a diagram Bouml checks the validity of the flow,
for instance you can't have a flow starting from an output pin, but you may after edit the extremities of the
flow, producing an invalid case, you are responsible of that, perhaps the non consistent flow is temporary. To
add a flow you have to use an activity diagram (obviously the diagram or the flow drawing may be deleted just
after !), it is not possible to add a flow through the browser. It is also not possible to move a flow out of its start
or end container in the browser.

In the browser are written the name of the flows (by default <<flow>>) , the stereotype may be may be
showed/hidden through the Miscellaneous menu.

Menus

The flow menu appearing with a right mouse click on its representation in the browser is something like these,
supposing it is not read-only nor deleted (see also menu in a diagram) :

Menu : edit

edit allows to show/modify the flows properties. In case the flow is read-only, the fields of the dialog are also
read-only.

Flow dialog, tab Uml

The tab Uml is a global tab, independent of the language :

229

The proposed stereotypes are the default ones specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it. The
stereotype and the multiplicity are used both (may be with the stereotype of the class(es) in Idl) to compute the
default declaration.

The editor button visible above and associated here to the description and initial value, allows to edit the
description or initial value in an other window, or to call an external editor (for instance Xcoral) specified
through the environment dialog. Note that this external editor have to create an own window, its parameter is
the pathname of the file containing the description, its execution is done in parallel with BOUML which looks
each second at the file contents to get the new definition until the dialog is closed (I do not like very much this
polling but this works even QT isn't compiled with the thread support).

Flow dialog, tab Ocl

This tab allows to give the Ocl definition of the flow, but in fact BOUML doesn't check the syntax, this is just a
convention.

The weight, guard, selection and transformation are the standard UML properties of a flow.

Flow dialog, tab C++

This tab allows to give the C++ definition of the flow, but in fact BOUML doesn't check the syntax, this is just a
convention.

230

Flow dialog, tab Java

This tab allows to give the Java definition of the flow, but in fact BOUML doesn't check the syntax, this is just a
convention.

Menu : delete

The menu entry delete is only present when the flow is not read-only.

Delete the flow, associated get and set operations when they exist, and all the representation of them in the
opened diagrams. After that it is possible to undelete them (from the browser) until you close the project :
obviously the deleted items are not saved !

Menu : select X

To select the target of the flow.

Menu : mark

See mark

Default stereotypes

The dialog allowing to set the default stereotypes has a tab reserved for the flows :

231

Drawing

A flow is drawn in a diagram with a line may be with the associated labels : flow's name, stereotypes (the
stereotype interrupt is specially managed and allows to show a zigzag), the weight, the guard, the selection
and transformation, depending on the drawing ssettings :

To add a new flow between elements, select the flow through the buttons on the top of the diagram sub
window, click on the start element with the left mouse button, move the mouse, each time the mouse button is
raised a new line break is introduced, at least click on the end element. To abort a flow construction press the
right mouse button or do a double click with the left mouse button.

A line may be broken, during its construction of after clicking on the line with the left mouse button and
moving the mouse with the mouse button still pushed. To remove a line break, a double click on the point with
the left mouse button is enough, or use the line break menu of the point using the right mouse button.

By default the lines go to the center of their extremities, to decenter a line click near the desired extremity and
move the mouse click down. To come back to a center line, use the menu geometry.

By default a relation is drawn with geometry, except if you ask for a given geometry depending on his kind
through the entry edit default geometries available in the menu of the project in the browser.

A right mouse click on a flow in a diagram or a double click with left mouse button calls the following menu
(supposing the flow editable) :

232

Menu : edit

To edit the flow

Menu : select labels

To select the labels (flow's name, stereotypes) associated to the flow. Useful when you are lost after many label
movings.

Menu : labels default position

To place the labels (flow's name, stereotypes, role(s) and multiplicity(ies)) associated to the flow in the default
position. Useful when you are lost after many label movings.

By default when you move a class or a flow point break or edit the flow, the associated labels are moved to their
default position, this may be irritating. To ask BOUML to not move the associated labels on the flows in a
diagram, use the drawing settings of the diagrams.

Menu : geometry

Allows to choose one of the line geometry :

Note : if you manually move the central line of the last two geometries this one stop to be automatically
updated when you move one of the two extremities of the flow.

Menu : tools

Appears only when at least one plug-out is associated to the flow. To apply a plug-out on the flow.

Drawing settings

The drawing settings associated to the flows in a diagram may be set through the the diagram itself or one of
its parent, for instance :

233

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level.

write horizontally :

To made the label indicating the name, weight and guard on one line or several.

show information note :

To show or not the selection and transformation.

Drawing language :

To choose the language used to write the weight, guard, selection and transformation.

Previous : activity control node

Next : component

234

Component
A component is an autonomous unit with well defined interfaces that is replaceable within its environment. In
the old release of BOUML (up to the 1.5.1), the behavior of the artifact was defined at the component level.

A component may be placed in a component view or is nested in another component

A component may be created through the new component entry of the component view menu or through the
component button of a component diagram.

Browser Menu

The component menu appearing with a right mouse click on its representation in the browser is something like
these, supposing the component not read-only nor deleted (see also menu in a diagram) :

Menu : edit

edit allows to show/modify the component properties. In case the component is read-only, the fields of the
dialog are also read-only.

Component dialog, tab Uml

The tab Uml is a global tab, independent of the language :

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the

235

description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Component dialog, tab Required classes

This tab allows to specify the list of interface the component requires.

When a component C contains nested components, it is useless to repeat the list of required interfaces at the
level of C already defined by the sub components, the right list will be provided when you will add or .

Component dialog, tab Provided classes

This tab allows to specify the list of interface the component provides.

When a component C contains nested components, it is impossible to repeat the list of provided/realized
interfaces at the level of C already defined by the sub components, the right list will be provided when you will
add or .

Component dialog, tab Realizing classes

This tab allows to specify the list of classes realizing the behavior of the component.

236

Menu : set it nested in X

The menu entry set it nested in X is present when the component follow the component X in the browser.
Choosing this entry the current component became a sub component of X.

Menu : extract it from X

The menu entry extract it from X is present when the component is nested in X (perhaps X is itself nested in
another one, but it is not visible here). Choosing this entry the current component became a children of the
parent of X.

Menu : delete

The menu entry delete is only present when the component/artifact is not read-only.

Delete the component and all its representation in the opened diagrams. After that it is possible to undelete it
(from the browser) until you close the project : obviously the deleted items are not saved !

Menu : referenced by

To know who are the classes associated to the component, and the components referencing the current one
through a relation.

Menu : mark

See mark

Menu : tool

Appears only when at least one plug-out is associated to the components. To apply a plug-out on the
component.

Menu : select the required class

Menu : select a required class

Menu : select the realized class

Menu : select a realized class

Menu : select the provided class

Menu : select a provided class

Appears only when at least one class is required/provided/realized by the components. To quickly select the
appropriate class, the current component may also be quickly selected from its associated classes.

Default stereotypes

The dialog allowing to set the default stereotypes has a tab reserved for the components :

237

Drawing

A component is drawn in a component diagram or a deployment diagram, following the drawing settings they
may be drawn as a rectangle containing the component icon (UML 2.0 notation) or as a component icon being
a rectangle with two lobes (UML 1.5 notation) :

If the component is stereotyped by a stereotype part of a profile and this stereotype has an associated icon, this
icon will be used when you ask for draw the component as an icon, the image is unchanged when the scale is
100% else it is resized.

The default color of a component may be set through the drawing settings.

A right mouse click on a component in a diagram calls the following menu (supposing the component editable) :

238

Menu : add related elements

to add elements having a relation with the current element, the following dialog is shown :

Menu : edit drawing settings

These drawing settings concerns only the picture for which the menu is called.

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level. When you add a component in a
diagram, all the settings are set to default.

show ... : allows to write or not the component's interfaces and realization into its drawing as a compartment.

Menu : set associated diagram

set associated diagram allows to automatically open the current diagram when a double mouse click is made on
the component representation in a diagram or the browser. After that the only way to edit the component is to
choose the edit entry in the menu.

Previous : flow

Next : artifact

239

Artifact
Artifacts are used to produce source file(s) when the stereotype is source or database, or to specified how
libraries or an executable are composed.

An artifact stereotyped source (potentially) associated to classes to produce their code, but you may directly
give its source(s) contain for instance to define the C++ main function, as it is made in the plug-outs.

An artifact stereotyped database (potentially) associated to classes stereotyped table to produce their MySQL
code.

An artifact stereotyped text is not associated to classes and allows to produce its C++, Java, Php, python or Idl
definition as it is set, without any changes. The generated file is named like the artifact, including the
extension.

The non source nor text artifacts may be associated to other artifacts, this allows to define libraries and
executable, to generate Makefiles etc ... see the plug-out genpro producing a .pro file from the artifact
executable of the plug-outs.

An artifact may be created through the new artifact entry of the deployment view menu, through the artifact
button of a deployment diagram, or through the create source artifact of the class menu (in case the class view
containing the class has an associated deployment view).

Browser Menu

The artifact menu appearing with a right mouse click on its representation in the browser is something like
these, supposing the artifact not read-only nor deleted (see also menu in a diagram) :

Menu : edit

edit allows to show/modify the artifact properties. In case the artifact is read-only, the fields of the dialog are
also read-only.

Artifact dialog, tab Uml

The tab Uml is a global tab, independent of the language :

240

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

The default button visible above associated to the description allows to set the description with a default
contain specified through the generation settings. Useful to generate comments compatible Java Doc or
Doxygen for instance.

Artifact dialog, tab C++ header

This tab is only available for the source artifacts and allows to give the definition of the C++ header file
generated for the artifact, it is visible only if C++ is set through the menu Languages

In BOUML the generated code is obtained by the substitution of macros in a text, only the Definition part is
editable, the other one help you to see what will be generated for C++ (supposing you do not modify the C++
code generator !).

When you push the button default declaration, the form specified through the generation settings is
proposed, this last may be modified as you want, even to produce illegal source code.

When you do not want to generate the C++ header file (for instance for the main), empties the declaration

241

manually or using the button not generated in C++.

${NAME} produce the artifact's name capitalized, ${Name} produce the artifact's name with the first letter
capitalized, ${nAME} produce the artifact's name converted to lower case, at least ${name} produce the
artifact name without modification.

${comment} is replaced by the artifact description adding //

${description} is replaced by the artifact description without adding //

${includes} is replaced by the automatically generated #include and using forms (done by the C++ code
generator, not made by the dialog which produce a fixed form). It is also a good place to add your #include and
using forms, when the ones produced by the code generator are not sufficient. The C++ code generator does
not look at in the operations body, only the operation's profiles, relations and attributes, classes inheritances
etc ... are used to compute the needed #include list. You can also use dependencies to ask for to add #includes
specifying is these ones must be placed in header or source file. ${includes} and ${all_includes} are exclusive.

${all_includes} is replaced by all the automatically generated #include and using forms, it is also a good place
to add your #include and using forms, when the ones produced by the code generator are not sufficient. In this
case the code generator doesn't produce declarations in the header file nor #include in the source file, except
the ones added by you. ${all_includes} and ${includes} are exclusive.

${declarations} is replaced by the class declarations generated automatically (done by the C++ code
generator, not made by the dialog which produce a fixed form). It is also a good place to add your declarations,
when the ones produced by the code generator are not sufficient.

${namespace} is replaced by the name of the current namespace (an empty string out of a namespace),
dependent on the namespace specifications associated to the package containing the deployment view where
the artifact is defined. ${NAMESPACE} does the same but focing characters in upper case.

${namespace_start} is replaced by the namespace xx { forms, dependent on the namespace specifications
associated to the package containing the deployment view where the artifact is defined.

${definition} is replaced by the definition of the classes and extra artifact definitions associated to the artifact.

${namespace_end} is replaced by the } forms, dependent on the namespace specifications associated to the
package containing the deployment view where the artifact is defined.

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Artifact dialog, tab C++ source

This tab is only available for the source artifacts and allows to give the definition of the C++ source file
generated for the artifact, it is visible only if C++ is set through the menu Languages

When you push the button default declaration, the form specified through the generation settings is
proposed, this last may be modified as you want, even to produce illegal source code.

When you do not want to generate the C++ source file (for instance the artifact is only associated to an enum),
empties the declaration manually or using the button not generated in C++.

242

${comment} is replaced by the artifact description

${description} is replaced by the artifact description without adding //

${includes} if ${all_includes} is not used in the header definition, it is replaced by the automatically generated
#include and using forms (done by the C++ code generator, not made by the dialog which produce a fixed
form). If ${all_includes} is used in the header definition, it is replaced by the #include of the header. It is also a
good place to add your #include and using forms, the code generator does not look inside the bodies to
compute the needed ones.

${namespace} is replaced by the name of the current namespace (an empty string out of a namespace),
dependent on the namespace specifications associated to the package containing the deployment view where
the artifact is defined. ${NAMESPACE} does the same but focing characters in upper case.

${namespace_start} is replaced by the namespace xx { forms, dependent on the namespace specifications
associated to the package containing the deployment view where the artifact is defined.

${members} is replaced by the non inline members of the classes and extra artifact definitions associated to
the artifact.

${namespace_end} is replaced by the } forms, dependent on the namespace specifications associated to the
package containing the deployment view where the artifact is defined.

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Artifact dialog, tab Java source

This tab is only available for the source artifacts and allows to give the definition of the Java source file
generated for the artifact, it is visible only if Java is set through the menu Languages

When you push the button default declaration, the form specified through the generation settings is
proposed, this last may be modified as you want, even to produce illegal source code.

When you do not want to generate the Java source file, empties the declaration manually or using the button
not generated in Java.

${comment} is replaced by the artifact description adding /* */

${description} is replaced by the artifact description without adding /* */

${package} is replaced by the package xx forms, dependent on the package specifications associated to the
BOUML package containing the deployment view where the artifact is defined.

${definition} is replaced by the definition of the classes and extra artifact definitions associated to the artifact.

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Artifact dialog, tab Php source

243

This tab is only available for the source artifacts and allows to give the definition of the Php source file
generated for the artifact, it is visible only if Php is set through the menu Languages

When you push the button default declaration, the form specified through the generation settings is
proposed, this last may be modified as you want, even to produce illegal source code.

When you do not want to generate the Php source file, empties the declaration manually or using the button
not generated in Php.

${comment} is replaced by the artifact description adding /* */

${description} is replaced by the artifact description without adding /* */

${namespace} is replaced by the namespace xx; dependent on the namespace specifications associated to the
package containing the deployment view where the artifact is defined.

${require_once} is replaced by the require_once forms for the files associated to the classes referenced by the
ones produced by the artifact. It is also a good place to add your required_once forms, when the ones produced
by the code generator are not sufficient. The Php code generator does not look at in the operations body, only
the operation's profiles, relations and attributes, classes inheritances etc ... are used to compute the needed
require_once list.

${use} is replaced by the use and use-as forms defined through the dependencies between classes from classes
generated by the current artifact, see relation

${definition} is replaced by the definition of the classes and extra artifact definitions associated to the artifact.

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Artifact dialog, tab Python source

This tab is only available for the source artifacts and allows to give the definition of the Python source file
generated for the artifact, it is visible only if Python is set through the menu Languages

244

When you push the button default declaration, the form specified through the generation settings is
proposed, this last may be modified as you want, even to produce illegal source code.

When you do not want to generate the Python source file, empties the declaration manually or using the button
not generated in Python.

${comment} is replaced by the artifact description adding # at the beginning of each line

${description} is replaced by the artifact description without adding #

${imports} is replaced by the automatically generated import and from .. import forms (done by the Python
code generator, not made by the dialog which produce a fixed form) from the dependencies between classes
and between artifacts stereotyped import or from. A dependency stereotyped import between artifact produces
an import, stereotyped from this produces a from ... import *. A dependency stereotyped import between
classes produces an import, stereotyped from this produces a form from ... import.

${definition} is replaced by the definition of the classes and extra artifact definitions associated to the artifact.

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Artifact dialog, tab Idl source

This tab is only available for the source artifacts and allows to give the definition of the Idl source file
generated for the artifact, it is visible only if Idl is set through the menu Languages. In the picture given for the
UML tab, the Idl tab is not enabled because the artifact is not associated to at least one class defined in Idl,
else :

245

When you push the button default declaration, the form specified through the generation settings is
proposed, this last may be modified as you want, even to produce illegal source code.

When you do not want to generate the Idl source file, empties the declaration manually or using the button not
generated in Idl.

${NAME} produce the artifact name capitalized, ${Name} produce the artifact name with the first letter
capitalized, at least ${name} produce the artifact name without modification.

${comment} is replaced by the artifact description adding //

${description} is replaced by the artifact description without adding //

${includes} will be replaced by the automatically generated #include forms (not made by the dialog which
produce a fixed form) ... in a future version of the Idl generator, it is a good place to add your #include forms.

${module_start} is replaced by the module xx { forms, dependent on the module specifications associated to
the BOUML package containing the deployment view where the artifact is defined.

${definition} is replaced by the definition of the classes and extra artifact definitions associated to the artifact.

${module_end} is replaced by the } forms, dependent on the module specifications associated to the BOUML
package containing the deployment view where the artifact is defined.

Refer to the generation settings for more details.

The forms @{property} are replaced by the value of the corresponding user property if it is defined for the
class or at an upper level, else it is not substituted.

Artifact dialog, tab MySQL source

This tab is only available for the artifacts stereotyped database and allows to give the definition of the MySQL
source file generated for the artifact, it is visible only if MySQL is set through the menu Languages :

When you push the button default declaration, the form specified through the generation settings is
proposed, this last may be modified as you want, even to produce illegal source code. If you want to generate
only the tables just remove the definition of the database to have ${definition}.

When you do not want to generate the MySQL source file, empties the declaration manually or using the button
not generated in MySQL.

246

${NAME} produce the artifact name capitalized, ${Name} produce the artifact name with the first letter
capitalized, at least ${name} produce the artifact name without modification.

${comment} is replaced by the artifact description adding #

Artifact dialog, tab associated classes

This tab is only available for the source artifacts and allows to set the list of classes associated with the artifact.
The order of the associated classes and extra artifact definitions is important because it is followed by the code
generators to produce the definitions.

All the classes without associated artifact are given in the left table (above all the classes are associated with
an artifact), the classes associated with the current artifact and given in the table on the right, more the extra
artifact definitions. To move classes from a table to the other one, select them and click on the appropriate
arrow.

go up and go down allows to change the order of the associated classes and extra artifact definitions. Select
the wrong ordered element and use the appropriate button.

Artifact dialog, tab associated tables

This tab is only available for the database artifacts and allows to set the list of tables associated with the
artifact. The order of the associated tables and extra artifact definitions is important because it is followed by
the MySQL code generator to produce the definitions.

All the tables without associated artifact are given in the left table (above all the tables are associated with an
artifact), the tables associated with the current artifact and given in the table on the right more the extra
artifact definitions. To move tables from a table to the other one, select them and click on the appropriate
arrow.

go up and go down allows to change the order of the associated tables and extra artifact definitions. Select the
wrong ordered element and use the appropriate button.

Artifact dialog, tab associated artifacts

This tab is not enabled for a source nor database artifact, to set the unordered list of artifacts associated to the
current one. For instance for the artifact executable of the plug-out html :

247

Menu : delete

The menu entry delete is only present when the artifact is not read-only.

Delete the artifact and all its representation in the opened diagrams. After that it is possible to undelete it
(from the browser) until you close the project : obviously the deleted items are not saved !

Menu : generate

The menu entry generate is only present when the artifact is a source artifact or a a database artifact.

Allows to call the C++ generator, Java generator, Php Generator, Python generator, Idl generator and MySQL
generator.

Menu : edit

The menu entry edit is only present when the artifact is not read only and is a source artifact.

Allows to edit one of the generated files, for instance the header file :

Menu : referenced by

To know who are the classes associated to the artifact, and the artifact referencing the current one through a
relation.

Menu : mark

See mark

248

Menu : lock / unlock

It is possible to put a lock on a class or an artifact. A locked element cannot be modified editing it nor
roundtriped, and there is no code generation for it. When you put/unput a lock on a class it is also put/unput on
its sub classes and on the associated artifact and all the other classes associated to this artifact and their sub
classes. When you put/unput a lock on an artifact it is also put/unput on the associated classes and their sub
classes. It is also possible to put/unput locks recursively from a package, a class view and a deployment view.

Menu : tool

Appears only when at least one plug-out is associated to the artifacts. To apply a plug-out on the artifact.

Menu : select associated class

Menu : select an associated class

Only for the artifact source, appears only when at least one class is associated to the artifacts. To quickly select
the appropriate class, the current artifact may also be quickly selected from its associated classes.

Default stereotypes

The dialog allowing to set the default stereotypes has a tab reserved for the artifacts :

Generation settings

This very important dialog allows to specify many default definitions concerning the classes, more details will
be given in C++ generator, Java generator, Php generator, Python generator, Idl generator and MySQL
generator

The first C++ tab allows to specify the default header and source file definitions, it is visible only if C++ is set
through the menu Languages :

249

As you can see it is possible to choose the extension of the header and source files, to force the production of
the namespace header and to ask for the Javadoc style comment. When inline force include in header is set the
types referenced in the profile of the inline operations produce includes in the header, else the code generator
doesn't take care if there are inline operations to compute dependencies. The option a type used by value in an
operation profile forces its include in header allows to use old C++ compilers, to not set this option allows to
minimize the number of #include in the headers.

There are four ways to produce #include :

without path : ask for the C++ code generator to generate the #include without relative or absolute path

with absolute path : ask for the C++ code generator to generate the absolute path of the automatically
included files.

with relative path : ask for the C++ code generator to generate the relative path of the automatically
included files, relative to the file containing the #include

with root relative path : ask for the C++ code generator to generate the relative path of the automatically
included files, relative to the directory specified by the generation settings

The first Java tab allows to set the default Java file content associated to an artifact, it is visible only if Java is
set through the menu Languages :

250

As you can see it is possible to choose the extension of the files (even this is generally java), to force the
production of the package prefix before class names (this prefix is not produced in case the class or its package
are imported) and to ask for the Javadoc style comment.

The first Php tab allows to set the default Php file content associated to an artifact, it is visible only if Php is set
through the menu Languages :

There are four ways to produce the require_once forms

without path : ask for the Php code generator to generate them without relative or absolute path

with absolute path : ask for the Php code generator to generate the absolute path of the automatically
required files.

with relative path : ask for the Php code generator to generate the relative path of the automatically
required files, warning : relatively to the file containing the require_once

with root relative path : ask for the Php code generator to generate the relative path of the automatically
required files, relative to the directory specified by the generation settings (it is probably indicated in Php

251

include_path)

The first Python tab allows to set the default Python file content associated to an artifact, it is visible only if
Python is set through the menu Languages :

The first Idl tab allows to set the default Idl file content associated to an artifact, it is visible only if Idl is set
through the menu Languages :

The MySQL tab allows to set the default MySQL file content associated to an database artifact, it is visible only
if MySQL is set through the menu Languages and the artifact is stereotyped database :

252

Drawing

An artifact is drawn in a deployment diagram as a rectangle containing the artifact icon :

If the artifact is stereotyped by a stereotype part of a profile and this stereotype has an associated icon, this
icon will be used unchanged when the scale is 100% else it is resized.

The default color of an artifact may be set through the drawing settings.

A right mouse click on an artifact in a diagram calls the following menu (supposing the artifact editable) :

253

Menu : add related elements

to add elements having a relation with the current element, the following dialog is shown :

Menu : edit drawing settings

These drawing settings concerns only the picture for which the menu is called.

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level. When you add an artifact in a
diagram, all the settings are set to default.

Menu : set associated diagram

set associated diagram allows to automatically open the current diagram when a double mouse click is made on
the artifact representation in a diagram or the browser. After that the only way to edit the artifact is to choose
the edit entry in the menu.

Menu : remove diagram association

To stop to associate a diagram to the artifact.

Previous : component

Next : deployment node

254

Node
Nodes are used to specify how the deployment is made, a node may represent a CPU, a device etc ...

A node may be created through the new node entry of a deployment view or through the component button of a
deployment diagram.

Menus

The node menu appearing with a right mouse click on its representation in the browser is something like these,
supposing the node not read-only nor deleted (see also menu in a diagram) :

Menu : edit

edit allows to show/modify the node properties. In case the node is read-only, the fields of the dialog are also
read-only.

Node dialog, tab Uml

The tab Uml is a global tab, independent of the language :

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Menu : delete

The menu entry delete is only present when the node is not read-only.

Delete the node and all its representation in the opened diagrams. After that it is possible to undelete it (from
the browser) until you close the project : obviously the deleted items are not saved !

Menu : mark

255

See mark

Menu : tool

Appears only when at least one plug-out is associated to the nodes. To apply a plug-out on the node.

Default stereotypes

The dialog allowing to set the default stereotypes has a tab reserved for the components :

Drawing

A node is drawn in a deployment diagram as a parallelepiped depending on the drawing settings.

If the node is stereotyped by a stereotype part of a profile and this stereotype has an associated icon, this icon
will be used unchanged when the scale is 100% else it is resized.

A right mouse click on a node in a diagram calls the following menu (supposing the node editable) :

Menu : add related elements

to add elements having a relation with the current element, the following dialog is shown :

256

Menu : edit drawing settings

These drawing settings concerns only the picture for which the menu is called.

A settings valuing default indicates that the setting specified in the upper level (here the diagram) must be
followed, obviously this one may also be default ... up to the project level. When you add a node in a diagram,
all the settings are set to default.

write node instance horizontally

Allows to write the the node type and the instance name on the same line (see host above) or on two lines (see
laserwriter above).

show stereotype properties :

to indicate through a note the (non empty) value of the stereotype properties in case the node is stereotyped by
a stereotype part of a profile. By default the stereotype properties are hidden.

Menu : select linked items

To select all the items connected by one or several lines (whatever the line represent : relation, anchor ...), help
to quickly select them for a moving etc ...

Menu : set associated diagram

set associated diagram allows to automatically open the current diagram when a double mouse click is made on
the node representation in a diagram or the browser. After that the only way to edit the node is to choose the
edit entry in the menu.

Previous : artifact

Next : extra artifact definition

257

Extra artifact definition
An extra artifact definition is an alien allowing you to specify directly the generated code for each language.
This allows an artifact to generate non class/interface forms between classes/interfaces.

An extra artifact definition is created through the artifact menu called from the browser :

Menus

The extra artifact definition menu appearing with a right mouse click on its representation in the browser is
something like these, supposing it is not read-only nor deleted :

Menu : edit

edit allows to show/modify the extra artifact definition properties. In case the extra definition is read-only, the
fields of the dialog are also read-only.

Extra definition dialog, tab Uml

The tab Uml is a global tab, independent of the language :

The name and the stereotype do not have meaning for BOUML.

The description is not used by the code generators.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note

258

that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Extra definition dialog, tab C++

The tab C++ allows to specify the code generated in the header and/or the source file(s), it is visible only if
C++ is set through the menu Languages

The declaration part is generated in the header file.

The definition part is produced in the source file.

Extra definition dialog, tab Java

The tab Java allows to specify the code generated in Java, it is visible only if Java is set through the menu
Languages

Extra definition dialog, tab Php

The tab Php allows to specify the code generated in Php, it is visible only if Php is set through the menu
Languages

259

Extra definition dialog, tab Python

The tab Python allows to specify the code generated in Python, it is visible only if Python is set through the
menu Languages :

Extra definition dialog, tab Idl

The tab Idl allows to specify the code generated in Idl, it is visible only if Idl is set through the menu Languages
:

Extra definition dialog, tab MySQL

The tab MySQL allows to specify the code generated in MySQL, it is visible only if MySQL is set through the
menu Languages :

260

Menu : duplicate

The menu entry duplicate clone the extra definition.

Menu : delete

The menu entry delete is only present when the extra definition is not read-only.

Delete the extra definition. After that it is possible to undelete it (from the browser) until you close the project :
obviously the deleted items are not saved !

Menu : mark

See mark

Previous : deployment node

Next : use case diagram

261

Use case diagram

The use case diagrams may be placed in a use case view or a use case

A use case diagram is created through the new use case diagram entry of the use case view and use case
browser menus.

Browser Menu

The node menu appearing with a right mouse click on its representation in the browser is something like these,
supposing the diagram not read-only nor deleted :

Browser Menu : show

show allows to show the diagram picture, and edit it in case it is not read only.

Browser Menu : edit

edit allows to show/modify the diagram properties. In case the diagram is read-only, the fields of the dialog are
also read-only.

Use case diagram dialog, tab Uml

262

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it. The
stereotype of a diagram doesn't have a special meaning for BOUML.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Browser Menu : edit drawing settings

This dialog allows to specify how the items of the diagram must be drawn by default, you may choose default
for each value, in this case the effective value if specified in the upper level (which itself may specify default etc
... up to the project level).

package name in tab : to indicate if the package's name must be written in the tab which is the small
rectangle on the top (note : a transparent package doesn't have shadow) :

show packages context : to indicate if the context where the package is defined must be written, it is not
the case just above. The context may be the “UML context” which is the path of the package in the
browser (choice followed for awt below), or the C++ / Php namespace specified by the package, or the
Java package specified by the package (choice followed for picture below) or at least the Idl module :

automatic labels position : To ask BOUML to move or to not move the associated labels on the relations in
a diagram when the relation is edited or the connected items are moved etc ...

show stereotype properties : to indicate through a note the (non empty) value of the stereotype properties
in case the element is stereotyped by a stereotype part of a profile. By default the stereotype properties
are hidden.

color gradient : by default the elements are colored without gradient, you can ask for to use a diagonal,
vertical or horizontal gradient.

Browser Menu : duplicate

Clone the diagram in a new one

Browser Menu : delete

263

The delete entry is only present when the diagram is not read-only.

Delete the diagram and all its representation in the opened diagrams. After that it is possible to undelete it
(from the browser) until you close the project : obviously the deleted items are not saved !

Menu : mark

See mark

Browser Menu : tools

The menu entry tool is only present in case at least a plug-out may be applied on the diagram. The selected tool
is called and applied on the current diagram.

Picture menu

The diagram menu appearing with a right mouse click out off any item in the diagram picture is something like
these, supposing the diagram not read-only :

Picture Menu : add marked elements

Only appears when a elements whose can be added in the diagram are marked in the browser, all these
elements whose are not yet present in the diagram are added in the diagram, allowing to not have to do several
drag & drop from the browser to them, but their position will probably not be the good one

Picture Menu : edit drawing settings

see edit drawing settings.

Picture Menu : select all

Select all the items of the current diagram, also done through a control a.

Picture Menu : find selected browser element

To find in the diagram a representation of the elements selected in the browser

Picture Menu : optimal scale

264

similar to the fit scale button, change scale to see all the diagram's elements at great as possible

Picture Menu : optimal window size

Similar to the button , change the size of the windows to see all the diagram's elements with the current
scale

Picture Menu : copy visible part

Put the visible part of the current diagram in the clipboard (copy), it is a screen copy, the current scale have
impact on the picture quality. To easily get all the diagram's elements use optimal window size

It is also possible to print all (not only the visible part) the current diagram on printer or a file through the
button

Picture Menu : save visible picture part

To save the visible part of the current diagram in a file, it is a screen copy, the current scale have impact on the
picture quality.

Picture Menu : set preferred size and scale

To memorize the current diagram sub window size and the current scale. These ones will be used the next time
the diagram will be opened.

Picture Menu : set preferred scale

To memorize the current scale. These one will be used the next time the diagram will be opened.

Picture Menu : restore preferred size and scale

In case a preferred sub window size and preferred scale was set, follow them.

Picture Menu : unset preferred and scale

To stop to define a preferred size and scale was set

Picture Menu : format

By default the diagram's canvas size is 840 x 1188 points corresponding to an iso A4 format (210*4 x 297*4),
all the predefined available formats are :

iso A5 : 592 x 840

iso A4 : 840 x 1188

iso A3 : 1188 x 1680

iso A2 : 1680 x 2376

iso A1 : 2376 x 3364

iso A0 : 3364 x 4756

USA A : 864 x 1116

USA B : 1116 x 1728

USA C : 1728 x 2236

USA D : 2236 x 3456

USA E : 3456 x 4472

USA Letter : 864 x 1116

USA Legal : 864 x 1424

USA Tabloid : 1116 x 1728

265

Each format also exists in landscape (it is Ledger in case of Tabloid)

The menu entry Custom allows to specify the size, the width and height can be set between 400 and 40000.

Picture Menu : undo changes

Undo all the changes made since the diagram was opened the last time. Note that the diagram is restored
independently of the the project saving. Obviously the deleted browser items was not restored !

Default stereotypes

The dialog allowing to set the default stereotypes has a tab reserved for the diagrams :

Drawing

A use case diagram may contain actors, classes, use cases, packages, fragment, notes, texts, diagram icons,
subjects and the relations.

To place these elements in the diagram, use the buttons on the top (to create a new element or choose from the
already defined ones) then click at the appropriate position in the diagram, or grab the element from the
browser into the diagram.

The scale may be changed from 30 up to 200 %. To allows to see the relation kinds even with a small scale, the
size of the arrows and other is unmodified.

266

fit% allows to set the largest scale allowing to show all the picture, as it is possible. Because of the scrollbar
management, hitting several times on fit% may give several scales.

Classically, the left mouse click may be used to select an element, or several when the control key is down, a
multiple selection may also be done defining a region using the mouse left click out of any element and moving
the mouse with the click and maintaining the click down. The diagram's elements may be moved after a left
mouse click on an element and maintaining the click down during the mouse move. The right mouse click is
used to show context dependent menus.

control s is a shortcut to save the project

control shift s is a shortcut to save the project in a new one

control p is a shortcut to print the active diagram

control a is a shortcut to select all the diagram's elements

control d is a shortcut to delete the selected element(s), the model is affected

suppr is a shortcut to remove the selected element(s) from the diagram, these elements are not deleted

control c is a shortcut to copy the selected diagram's elements

control x is a shortcut to cut (remove from diagram) the selected diagram's elements

control v is a shortcut to paste the selected diagram's elements

the keyboard arrows allow to move the selected items

You can define your own shortcut using the shortcut editor through the Miscellaneous menu.

The global menu miscellaneous allows you to show / hide a grid in the background of the diagram.

When several diagram's elements are selected, the menu appearing on a left mouse click allows to align or
resize or distribute them :

267

If all the selected elements has the same kind (for instance all are a use case), you edit their drawing settings
globally :

and for instance when the elements are notes :

The settings valuing <unchanged> are not changed for the selected elements, in the other case the same value
is set for all the elements.

You can also reuse the drawing settings set for the first selected element for the other selected elements.

Subject

A subject is drawn as a rectangle, to set/modify the title do a double left mouse click on the representation or
call the menu through a right mouse click and choose edit :

Fragment

A fragment is resizeable. To change the fragment's name choose the edit entry of its menu or double click on it

A right mouse click on a note show the following menu :

268

Edit drawing settings allows to change the fill color

Note

A note may contain any text, a note is resizeable. To change the text of a note choose the edit entry of its menu
or double click on it, this open a window containing the text :

A right click on the edited note calls a dialog allowing some text manipulations thanks Qt.

A right mouse click on a note show the following menu :

The font may be changed, by default the font is the one used to write the other texts.

The color of the text may be changed, a text is black by default.

Edit drawing settings allows to change the fill color

Select linked items select all the items connected this the current one through any line, in the previous picture
this select all except the package, the text “upper diagram :” and the use case diagram icon.

Text

Text is another way to write a text, contrary to the note a text is written alone (see “upper diagram :” on the
picture below), by default a text contains blabla: a text cannot be empty. The edition of a text is done like for a
note. A text is resizeable, a resize is not automatically done when the contains is modified.

A right mouse click on a text show the following menu :

Image

269

You can directly insert an image independently of the use of stereotype part of a profile, the size of the image is
followed when the zoom is 100%. You can resize them, to go back to the initial size of an image just edit it (for
instance through a double mouse clic on it) and confirm. Like for a profile the image can be specified through
an absolute path, or a path relative to the root directory for the icons or relative to the project directory. In
case the path of an icon is not absolute, the icon are searched first using the root directory for the icons, then
using the current directory, then using the project directory.

When you insert an image or edit one the following dialog appears :

A right mouse click on an image show the following menu :

Diagram icon

A diagram icon is a shortcut to a diagram, this allows to quickly navigate through the diagram without
limitation (a class or some other item kinds may be associated to only one diagram). The used icon indicates
the diagram kind, but its name is not written.

A double mouse left click on a diagram icon opens the diagram, the open entry of the diagram icon menu does
the same thing.

A right mouse click on a diagram icon show the following menu :

The other diagram's elements have an own chapter, refer to them.

Previous : extra artifact definition

Next : sequence diagram

270

Sequence diagram

The sequence diagrams may be placed in a use case view or a use case or a class view.

A sequence diagram is created through the new sequence diagram entry of the use case view, use case or class
view browser menus.

Browser menu

The node menu appearing with a right mouse click on its representation in the browser is something like these,
supposing the diagram not read-only nor deleted :

Browser Menu : show

show allows to show the diagram picture, and edit it in case it is not read only.

Browser Menu : edit

edit allows to show/modify the diagram properties. In case the diagram is read-only, the fields of the dialog are
also read-only.

sequence diagram dialog, tab Uml

271

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it. The
stereotype of a diagram doesn't have a special meaning for BOUML.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Browser Menu : edit drawing settings

This dialog allows to specify how the items of the diagram must be drawn by default, you may choose default
for each value, in this case the effective value if specified in the upper level (which itself may specify default etc
... up to the project level).

drawing language : to indicate in which language the operations must be written when the full definition is
showed (see below), like for the class drawing in a class diagram. For instance, the class C has the
operation op returning an uchar (supposed translated unsigned char in C++, char in Java and octet in Idl)
and having the input parameter p having the type uchar and only in Idl a second out parameter p2 of the
same type. Depending on the drawing language :

272

instances drawing mode : to draw an instance in the standard way or tu use one of the icons actor
boundary, control or entity.

show operations full definition : to show all the operation profile or just its name (may be with the
arguments specified at the operation level in the diagram, see edit)

show class of operations : allows to show the name of the class where an operation is defined in the
messages of a sequence/communication diagram. This option has no effect while show operations full
definition is not set.
When it is shown the name of the class is followed by '.' before the name of the operation when the
drawing setting show message context is Java or Python, else it is followed by '::'.

write class instance horizontally : To write the instance type and name on the same line, or on two lines

show classes context : to write or not the context where the instance class is defined

show message context : to write of not the context of the classes referenced in the operation full definition

show stereotype properties : to indicate through a note the (non empty) value of the stereotype properties
in case the element is stereotyped by a stereotype part of a profile. By default the stereotype properties
are hidden.

color gradient : by default the elements are colored without gradient, you can ask for to use a diagonal,
vertical or horizontal gradient.

Browser Menu : duplicate

Clone the diagram in a new one

Browser Menu : delete

The delete entry is only present when the diagram is not read-only.

Delete the diagram and all its representation in the opened diagrams. After that it is possible to undelete it
(from the browser) until you close the project : obviously the deleted items are not saved !

Menu : mark

See mark

Browser Menu : tools

The menu entry tool is only present in case at least a plug-out may be applied on the diagram. The selected tool
is called and applied on the current diagram.

273

Picture menu

The diagram menu appearing with a right mouse click out off any item in the diagram picture is something like
these, supposing the diagram not read-only :

Picture Menu : transform to flat activity bars / transform to overlapping activity bars

Allows to automatically modify the diagram to use flat or overlapping activity bars.

The overlapping level introduced by a reflexive message is propaged to the next messages, you may have to
add explicit returns before transforming flat activity bars to overlapping ones. Known problem : the fragments
'alt' are not taken into account by the transformation, cutting first the activity bars crossing over the
separators may help for. The transformation can't be undo, to save the project before may be a good idea !

In a diagram using overlapping activity bars, the reception of a synchronous message create a new overlapping
activity bars, this is not the case for the reception of an asynchronous message (but you can ask for to create
an overlapping activity bars through the menu of the message).

in a diagram using overlapping activity bars, a reflexive synchronous messages is always at the beginning of an
activity bars and a reflexive returns at the end, you can't move them.

Picture Menu : edit drawing settings

see edit drawing settings.

Picture Menu : select all

Select all the items of the current diagram, also done through a control a

Picture Menu : find selected browser element

To find in the diagram a representation of the elements selected in the browser

Picture Menu : optimal scale

similar to the fit scale button, change scale to see all the diagram's elements at great as possible

Picture Menu : optimal window size

Similar to the button , change the size of the windows to see all the diagram's elements with the current

274

scale

Picture Menu : copy optimal picture part

Copy all the diagram elements, equivalent to a optimal windows size followed by a copy visible picture part
then a restore of the original windows size

Picture Menu : copy visible part

Put the visible part of the current diagram in the clipboard (copy), it is a screen copy, the current scale have
impact on the picture quality.

It is also possible to print all (not only the visible part) the current diagram on printer or a file through the
button

Picture Menu : save optimal picture part

To save all the diagram elements in a file, equivalent to a optimal windows size followed by a save visible
picture part then a restore of the original windows size

Picture Menu : save visible picture part

To save the visible part of the current diagram in a file, it is a screen copy, the current scale have impact on the
picture quality.

Picture Menu : set preferred size and scale

To memorize the current diagram sub window size and the current scale. These ones will be used the next time
the diagram will be opened.

Picture Menu : set preferred scale

To memorize the current scale. These one will be used the next time the diagram will be opened.

Picture Menu : restore preferred and scale

In case a preferred sub window size and preferred scale was set, follow them.

Picture Menu : unset preferred and scale

To stop to define a preferred size and scale was set

Picture Menu : format

By default the diagram's canvas size is 840 x 1188 points corresponding to an iso A4 format (210*4 x 297*4),
all the predefined available formats are :

iso A5 : 592 x 840

iso A4 : 840 x 1188

iso A3 : 1188 x 1680

iso A2 : 1680 x 2376

iso A1 : 2376 x 3364

iso A0 : 3364 x 4756

USA A : 864 x 1116

USA B : 1116 x 1728

USA C : 1728 x 2236

USA D : 2236 x 3456

USA E : 3456 x 4472

275

USA Letter : 864 x 1116

USA Legal : 864 x 1424

USA Tabloid : 1116 x 1728

Each format also exists in landscape (it is Ledger in case of Tabloid)

The menu entry Custom allows to specify the size, the width and height can be set between 400 and 40000.

Picture Menu : undo changes

Undo all the changes made since the diagram was opened the last time. Note that the diagram is restored
independently of the the project saving. Obviously the deleted browser items was not restored !

Operation/message Menu

The menu appearing with a right mouse click on an operation/message arrow is something like these,
supposing the diagram not read-only :

Message Menu : edit

edit allows to edit the message. In case the diagram is read-only, the fields of the dialog are also read-only

The proposed messages are the operations defined on the message receiver more the current one, but you may
also give any other message.

It is possible to change the synchronous/asynchronous state.

It is possible to indicate a stereotype (out of a profile), you can specify a default stereotype list through the
default stereotypes dialog

It is also possible to specify explicitly the message/operation arguments, is possible to give then on several
lines, obviously in this case BOUML produce the appropriate indent :

276

The edition of an explicit return allows to indicate the returned value :

The button message allows to create a new operation in the class of the instance and to select this new
operation. If the current message is an operation this button also allows to select this operation in the browser.

Message Menu : edit drawing settings

This dialog allows to specify how the operation/message must be drawn, you may choose default for each value,
in this case the effective value if specified in the upper level (which itself may specify default etc ... up to the
project level).

see operation drawing language and show full operation definition.

Message Menu : select linked items

Select linked items select all the items connected this the current one through any line.

Message Menu : select label

Select the label given the associated message/operation

Message Menu : label default position

Move the label given the associated message/operation to its default position.

Message Menu : go to new overlapping bar / go to parent bar

When the diagram use overlapping activity bars, to move the message in a new overlapping bar or in the bar
containing the bar receiving/emiting the message

Activity bar Menu

The top and the bottom of an activity bars may be changed using the mouse, clicking down the left mouse

277

button on the top or bottom and moving the mouse. The size of an activity bar is updated when you try to move
a message above the top or below the bottom of the bar.

An activity bar can be drawn as a standard activity bar or a coregion.

The menu appearing with a right mouse click on an activity bar rectangle is something like these, supposing
the diagram not read-only :

Message Menu : edit drawing settings

This dialog allows to specify the color of the activity duration rectangle.

Message Menu : select linked items

Select linked items select all the items connected this the current one through any line.

Message Menu : cut here

Cut the activity bar at the mouse place to obtain two activity bars, resize the bar when there is no message
above or below the mouse position (an empty activity bar is not created)

Message Menu : merge juxtaposed activity bars

When a least two activity bars (of the same life line) are juxtaposed, replace these ones by only one activity bar.

Message Menu : collapse in parent bars

Available when the bar in overlapped, to remove it moving the messages in the bar containing the current bar.

Class instance Menu

The menu appearing with a right mouse click on a class instance is something like these, supposing the
diagram not read-only :

Message Menu : edit drawing settings

This dialog allows to specify how a the class instance must be drawn, you may choose default for each value, in

278

this case the effective value if specified in the upper level (which itself may specify default etc ... up to the
project level).

write class instance horizontally : To write the instance type and name on the same line, or on two lines.

Message Menu : become mortal / immortal

By default an instance is immortal : its life line is infinite, else a X is automatically add under the last activity
bar and the life line is finite. Note that it is possible to add a new message below the end of the instance life,
the position of the end of life is updated, this is done also when you move/resize/delete the last activity bar.

Note that the vertical position of the instance is not fixed, to help you by default an instance is inserted on the
top of the picture, use the mouse to move it horizontally or vertically.

Message Menu : Insert in model / exit from model

There are two kinds of class instances : instances part of the model (visible in the browser), and pure graphic
instances (to not pollute the model with many useless instances). The button add or create an instance part
of the model. The button add or create a pure graphical instances. But after that you are able to transform a
pure graphical instance to a modeled one, or to replace the drawing of a modeled instance by a pure graphic
one (the modeled class instance itself is unchanged).

Message Menu : Replace it

This entry appears on a pure graphical instance and allows to replace it by a modeled instance of the same
class.

Continuation Menu

The size of an activity bar is updated when it is renamed and the name is to long to be written inside the
drawing, else the continuation drawing may may be resized by hand.

The menu appearing with a right mouse click on a continuation is something like these, supposing the diagram
not read-only :

Message Menu : edit drawing settings

This dialog allows to specify the color of the continuation ellipsis

Message Menu : select linked items

Select linked items select all the items connected this the current one through any line.

Default stereotypes

279

The dialog allowing to set the default stereotypes has a tab reserved for the diagrams :

and you can also set a default stereotype list for the messages :

Drawing

280

A sequence diagram may contain classes (may be drawn as an actor), instances (part of the model or only
graphical), fragment, notes, texts, diagram icons and the operations/messages including lost and found
messages.

To place these elements in the diagram, use the buttons on the top (to create a new element or choose from the
already defined ones) then click at the appropriate position in the diagram, or grab the element from the
browser into the diagram.

To add an operation/message select the appropriate button (the synchronous/asynchronous state may be
changed through the operation/message edit menu), click on the sender with the left mouse button, except for
the self operation/message move the mouse to the receiver maintaining the mouse button down, then mouse
button up.

BOUML doesn't fix the vertical size of the rectangle representing the activity duration, you are the master ! To
do this click down the left mouse button on the top or bottom and move the mouse. The size of an activity bar is
updated when you try to move a message above the top or below the bottom of the bar. When you move
vertically a message/operation out of its current activity duration rectangle, a new one is automatically added
is needed.

The scale may be changed from 30 up to 200 %. To allows to see the operation/message kinds even with a small
scale, the size of the arrows is unmodified.

fit% allows to set the largest scale allowing to show all the picture, as it is possible. Because of the scrollbar
management, hitting several times on fit% may give several scales.

Classically, the left mouse click may be used to select an element, or several when the control key is down, a
multiple selection may also be done defining a region using the mouse left click out of any element and moving
the mouse with the click and maintaining the click down. The diagram's elements may be moved after a left
mouse click on an element and maintaining the click down during the mouse move. The right mouse click is
used to show context dependent menus.

control s is a shortcut to save the project

control shift s is a shortcut to save the project in a new one

control p is a shortcut to print the active diagram

control a is a shortcut to select all the diagram's elements

control d is a shortcut to delete the selected element(s), the model is affected

suppr is a shortcut to remove the selected element(s) from the diagram, these elements are not deleted

control c is a shortcut to copy the selected diagram's elements

control x is a shortcut to cut (remove from diagram) the selected diagram's elements

control v is a shortcut to paste the selected diagram's elements

control z and control u are a shortcut of undo

control r and control y are a shortcut of redo

the keyboard arrows allow to move the selected items

281

You can define your own shortcut using the shortcut editor through the Miscellaneous menu.

The global menu miscellaneous allows you to show / hide a grid in the background of the diagram.

When several diagram's elements are selected, the menu appearing on a left mouse click allows to align or
resize or distribute them :

If all the selected elements has the same kind (for instance all are a class), you edit their drawing settings
globally :

and for instance when the elements are notes :

282

The settings valuing <unchanged> are not changed for the selected elements, in the other case the same value
is set for all the elements.

You can also reuse the drawing settings set for the first selected element for the other selected elements.

Fragment

A fragment is resizeable. To change the fragment's name choose the edit entry of its menu or double click on it

A right mouse click on a note show the following menu :

Edit drawing settings allows to change the fill color

When you edit a fragment the following dialog appears :

refer to : allows to reference any diagram, when you want to have an interaction use (fragment ref) choose the
diagram corresponding to this interaction

arguments / value : allows mainly to set the arguments and return value of an interaction use, to be compatible
with the norm you have to enter the full form using parameter list and a ':' in case the return form is set

Note

A note may contain any text, a note is resizeable. To change the text of a note choose the edit entry of its menu
or double click on it, this open a window containing the text, close the window to end the edition :

A right click on the edited note calls a dialog allowing some text manipulations thanks Qt.

A right mouse click on a note show the following menu :

283

The font may be changed, by default the font is the one used to write the other texts.

The color of the text may be changed, a text is black by default.

Edit drawing settings allows to change the fill color

Select linked items select all the items connected this the current one through any line.

Text

Text is another way to write a text, contrary to the note a text is written alone (see “upper diagram :” on the
picture below), by default a text contains blabla: a text cannot be empty. The edition of a text is done like for a
note. A text is resizeable, a resize is not automatically done when the contains is modified.

A right mouse click on a text show the following menu :

Image

You can directly insert an image independently of the use of stereotype part of a profile, the size of the image is
followed when the zoom is 100%. You can resize them, to go back to the initial size of an image just edit it (for
instance through a double mouse clic on it) and confirm. Like for a profile the image can be specified through
an absolute path, or a path relative to the root directory for the icons or relative to the project directory. In
case the path of an icon is not absolute, the icon are searched first using the root directory for the icons, then
using the current directory, then using the project directory.

When you insert an image or edit one the following dialog appears :

A right mouse click on an image show the following menu :

Diagram icon

284

A diagram icon is a shortcut to a diagram, this allows to quickly navigate through the diagram without
limitation (a class or some other item kinds may be associated to only one diagram). The used icon indicates
the diagram kind, but its name is not written.

A double mouse left click on a diagram icon opens the diagram, the open entry of the diagram icon menu does
the same thing.

A right mouse click on a diagram icon show the following menu :

The other diagram's elements have an own chapter, refer to them.

Previous : use case diagram

Next : collaboration diagram

285

Collaboration/communication diagram

The collaboration/communication diagrams may be placed in a use case view, a use case or a class view

A collaboration/communication diagram is created through the new collaboration diagram entry of the use case
view, use case and class view browser menus..

Browser menu

The node menu appearing with a right mouse click on its representation in the browser is something like these,
supposing the diagram not read-only nor deleted :

Browser Menu : show

show allows to show the diagram picture, and edit it in case it is not read only.

Browser Menu : edit

edit allows to show/modify the diagram properties. In case the diagram is read-only, the fields of the dialog are
also read-only.

collaboration/communication diagram dialog, tab Uml

286

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it. The
stereotype of a diagram doesn't have a special meaning for BOUML.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Browser Menu : edit drawing settings

This dialog allows to specify how the items of the diagram must be drawn by default, you may choose default
for each value, in this case the effective value if specified in the upper level (which itself may specify default etc
... up to the project level).

drawing language : to indicate in which language the operations must be written when the full definition is
showed (see below), like for the class drawing in a class diagram. For instance, the class C has the
operation op returning an int (supposed translated int in C++ and Java, octet in Idl) and having the input
parameter p having the type uchar (supposed translated unsigned char in C++, char in Java and octet in
Idl). Depending on the drawing language :

287

instances drawing mode : to draw an instance in the standard way or tu use one of the icons actor
boundary, control or entity.

show operations full definition : to show all the operation profile or just its name (may be with the
arguments specified at the operation level in the diagram, see edit)

show class of operations : allows to show the name of the class where an operation is defined in the
messages of a sequence/communication diagram. This option has no effect while show operations full
definition is not set.
When it is shown the name of the class is followed by '.' before the name of the operation when the
drawing setting show message context is Java or Python, else it is followed by '::'.

show hierarchical rank : a message may be numbered using its rank (a simple number) or its hierarchical
rank (numbers separated with dot)

write class instance horizontally : To write the instance type and name on the same line, or on two lines

package name in tab : to indicate if the package's name must be written in the tab which is the small
rectangle on the top (note : a transparent package doesn't have shadow) :

show packages context : to indicate if the context where the package is defined must be written, it is not
the case just above. The context may be the “UML context” which is the path of the package in the
browser (choice followed for awt below), or the C++ or Php namespace specified by the package, or the
Java package specified by the package (choice followed for picture below) or at least the Idl module :

show stereotype properties : to indicate through a note the (non empty) value of the stereotype properties
in case the element is stereotyped by a stereotype part of a profile. By default the stereotype properties
are hidden.

color gradient : by default the elements are colored without gradient, you can ask for to use a diagonal,
vertical or horizontal gradient.

Browser Menu : duplicate

Clone the diagram in a new one

Browser Menu : delete

The delete entry is only present when the diagram is not read-only.

Delete the diagram and all its representation in the opened diagrams. After that it is possible to undelete it

288

(from the browser) until you close the project : obviously the deleted items are not saved !

Menu : mark

See mark

Browser Menu : tools

The menu entry tool is only present in case at least a plug-out may be applied on the diagram. The selected tool
is called and applied on the current diagram.

Picture menu

The diagram menu appearing with a right mouse click out off any item in the diagram picture is something like
these, supposing the diagram not read-only :

Picture Menu : edit all the messages

To edit all the messages appearing in the diagram, to change the messages themselves or their numbering
(recursively or not), or delete some of them (recursively or not) :

The proposed messages are the operations defined on the message receiver more the current one, but you may
also give any other message.

A mouse click on the appropriate line and column allows to modify the appropriate cell.

Picture Menu : edit drawing settings

see edit drawing settings.

Picture Menu : select all

289

Select all the items of the current diagram, also done through a control a

Picture Menu : find selected browser element

To find in the diagram a representation of the elements selected in the browser

Picture Menu : optimal scale

similar to the fit scale button, change scale to see all the diagram's elements at great as possible

Picture Menu : optimal window size

Similar to the button , change the size of the windows to see all the diagram's elements with the current
scale

Picture Menu : copy optimal picture part

Copy all the diagram elements, equivalent to a optimal windows size followed by a copy visible picture part
then a restore of the original windows size

Picture Menu : copy visible part

Put the visible part of the current diagram in the clipboard (copy), it is a screen copy, the current scale have
impact on the picture quality.

It is also possible to print all (not only the visible part) the current diagram on printer or a file through the
button

Picture Menu : save optimal picture part

To save all the diagram elements in a file, equivalent to a optimal windows size followed by a save visible
picture part then a restore of the original windows size

Picture Menu : save visible picture part

To save the visible part of the current diagram in a file, it is a screen copy, the current scale have impact on the
picture quality.

Picture Menu : set preferred size and scale

To memorize the current diagram sub window size and the current scale. These ones will be used the next time
the diagram will be opened.

Picture Menu : set preferred scale

To memorize the current scale. These one will be used the next time the diagram will be opened.

Picture Menu : restore preferred size and scale

In case a preferred sub window size and preferred scale was set, follow them.

Picture Menu : unset preferred and scale

To stop to define a preferred size and scale was set

Picture Menu : format

By default the diagram's canvas size is 840 x 1188 points corresponding to an iso A4 format (210*4 x 297*4),
all the predefined available formats are :

iso A5 : 592 x 840

iso A4 : 840 x 1188

iso A3 : 1188 x 1680

iso A2 : 1680 x 2376

290

iso A1 : 2376 x 3364

iso A0 : 3364 x 4756

USA A : 864 x 1116

USA B : 1116 x 1728

USA C : 1728 x 2236

USA D : 2236 x 3456

USA E : 3456 x 4472

USA Letter : 864 x 1116

USA Legal : 864 x 1424

USA Tabloid : 1116 x 1728

Each format also exists in landscape (it is Ledger in case of Tabloid)

The menu entry Custom allows to specify the size, the width and height can be set between 400 and 40000.

Picture Menu : undo changes

Undo all the changes made since the diagram was opened the last time. Note that the diagram is restored
independently of the the project saving. Obviously the deleted browser items was not restored !

Operation/message Menu

The menu appearing with a right mouse click on link is something like these, supposing the diagram not read-
only :

The two first entries allows to add a message in each direction, you have to choose the new message rank
among the proposed ones, but you may change it after with edit its message or edit all the messages. For
instance in case a new message is added from from the keyboard great to a stop (see the first picture), the
proposed ranks are :

Message Menu : edit its message

edit allows to edit the message of the link, or delete some of them (recursively or not), see edit.

Message Menu : edit all the messages

To edit all the messages appearing in the diagram, to change the messages themselves or their numbering
(recursively or not), or delete some of them (recursively or not), see edit.

291

Message Menu : edit drawing settings

see drawing settings

Message Menu : select linked items

Select linked items select all the items connected this the current one through any line.

Class instance Menu

The menu appearing with a right mouse click on a class instance is something like these, supposing the
diagram not read-only :

Message Menu : edit drawing settings

This dialog allows to specify how a the class instance must be drawn, you may choose default for each value, in
this case the effective value if specified in the upper level (which itself may specify default etc ... up to the
project level).

write class instance horizontaly : To write the instance type and name on the same line, or on two lines.

Message Menu : Insert in model / exit from model

There are two kinds of class instances : instances part of the model (visible in the browser), and pure graphic
instances (to not pollute the model with many useless instances). The button add or create an instance part
of the model. The button add or create a pure graphical instances. But after that you are able to transform a
pure graphical instance to a modeled one, or to replace the drawing of a modeled instance by a pure graphic
one (the modeled class instance itself is unchanged).

Message Menu : Replace it

This entry appears on a pure graphical instance and allows to replace it by a modeled instance of the same
class.

Default stereotypes

The dialog allowing to set the default stereotypes has a tab reserved for the diagrams :

292

Drawing

A collaboration/communication diagram may contain classes (may be drawn as an actor) instances, notes, texts,
diagram icons, packages and the operations/messages.

To place these elements in the diagram, use the buttons on the top (to create a new element or choose from the
already defined ones) then click at the appropriate position in the diagram, or grab the element from the
browser into the diagram.

To add an operation/message on an already existing link, double mouse click on it or use the menu appearing
though a right mouse click.

The scale may be changed from 30 up to 200 %. To allows to see the operation/message kinds even with a small
scale, the size of the arrows is unmodified.

fit% allows to set the largest scale allowing to show all the picture, as it is possible. Because of the scrollbar
management, hitting several times on fit% may give several scales.

Classically, the left mouse click may be used to select an element, or several when the control key is down, a
multiple selection may also be done defining a region using the mouse left click out of any element and moving
the mouse with the click and maintaining the click down. The diagram's elements may be moved after a left
mouse click on an element and maintaining the click down during the mouse move. The right mouse click is
used to show context dependent menus.

293

control s is a shortcut to save the project

control shift s is a shortcut to save the project in a new one

control p is a shortcut to print the active diagram

control a is a shortcut to select all the diagram's elements

control d is a shortcut to delete the selected element(s), the model is affected

suppr is a shortcut to remove the selected element(s) from the diagram, these elements are not deleted

control c is a shortcut to copy the selected diagram's elements

control x is a shortcut to cut (remove from diagram) the selected diagram's elements

control v is a shortcut to paste the selected diagram's elements

control z and control u are a shortcut of undo

control r and control y are a shortcut of redo

the keyboard arrows allow to move the selected items

You can define your own shortcut using the shortcut editor through the Miscellaneous menu.

The global menu miscellaneous allows you to show / hide a grid in the background of the diagram.

When several diagram's elements are selected, the menu appearing on a left mouse click allows to align or
resize or distribute them :

If all the selected elements has the same kind (for instance all are a class), you edit their drawing settings
globally :

294

and for instance when the elements are notes :

The settings valuing <unchanged> are not changed for the selected elements, in the other case the same value
is set for all the elements.

You can also reuse the drawing settings set for the first selected element for the other selected elements.

Note

A note may contain any text, a note is resizeable. To change the text of a note choose the edit entry of its menu
or double click on it, this open a window containing the text, close the window to end the edition :

A right click on the edited note calls a dialog allowing some text manipulations thanks Qt.

A right mouse click on a note show the following menu :

The font may be changed, by default the font is the one used to write the other texts.

The color of the text may be changed, a text is black by default.

Edit drawing settings allows to change the fill color

Select linked items select all the items connected this the current one through any line.

Text

Text is another way to write a text, contrary to the note a text is written alone (see “upper diagram :” on the

295

picture below), by default a text contains blabla: a text cannot be empty. The edition of a text is done like for a
note. A text is resizeable, a resize is not automatically done when the contains is modified.

A right mouse click on a text show the following menu :

Image

You can directly insert an image independently of the use of stereotype part of a profile, the size of the image is
followed when the zoom is 100%. You can resize them, to go back to the initial size of an image just edit it (for
instance through a double mouse clic on it) and confirm. Like for a profile the image can be specified through
an absolute path, or a path relative to the root directory for the icons or relative to the project directory. In
case the path of an icon is not absolute, the icon are searched first using the root directory for the icons, then
using the current directory, then using the project directory.

When you insert an image or edit one the following dialog appears :

A right mouse click on an image show the following menu :

Diagram icon

A diagram icon is a shortcut to a diagram, this allows to quickly navigate through the diagram without
limitation (a class or some other item kinds may be associated to only one diagram). The used icon indicates
the diagram kind, but its name is not written.

A double mouse left click on a diagram icon opens the diagram, the open entry of the diagram icon menu does
the same thing.

A right mouse click on a diagram icon show the following menu :

The other diagram's elements have an own chapter, refer to them.

296

Previous : sequence diagram

Next : class diagram

297

Class diagram

The class diagrams may be placed in a class view, an use case view or an use case.

A class diagram is created through the new static class diagram entry of the class view browser menus.

Note a class diagram can also be used to do a package diagram or a profile diagram.

Browser menu

The node menu appearing with a right mouse click on its representation in the browser is something like these,
supposing the diagram not read-only nor deleted :

Browser Menu : show

show allows to show the diagram picture, and edit it in case it is not read only.

Browser Menu : edit

edit allows to show/modify the diagram properties. In case the diagram is read-only, the fields of the dialog are
also read-only.

class diagram dialog, tab Uml

298

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it. The
stereotype of a diagram doesn't have a special meaning for BOUML.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Browser Menu : edit drawing settings

This dialog allows to specify how the items of the diagram must be drawn by default, you may choose default
for each value, in this case the effective value if specified in the upper level (which itself may specify default etc
... up to the project level).

drawing language : to indicate in which language the operations must be written when the full definition is
showed (see below), see class drawing in a class diagram.

classes drawing mode : to draw the class using a rectangle or an icon, see drawing mode in a class
diagram.

hide classes attributes : to hide or not the attributes, it is also possible to specify the visibility for each
one.

hide classes operations : to hide or not the operations, it is also possible to specify the visibility for each

299

one.

show classes member full definition : to show all the attributes and operation profile or just their name

show members visibility : to write or not the visibility

show members stereotype : to write or not the stereotypes

show context in members definition : to write or not the context of classes indicated in the full member
definition

show attributes multiplicity : to write or not the multiplicity of the attributes when the drawing language
is UML and you ask to show for full members definition

show attributes initialization : to write or not the default value of the attributes when you ask to show for
full members definition

member max width : to limit the width (in characters) used to produce the definition of the operations and
attributes. When the width is greater that the max width, the string is cut and ... is added. Doesn't take
into account the stereotype.

show parameter direction : to write or not the direction of the operation's parameters

show parameter name : to write or not the name of the operation's parameters

draw all classes relations : to automatically draw or not the new relations, obviously a relation will be
added in a diagram only when the start and end classes (may be the same) are drawn.

package name in tab : to indicate if the package's name must be written in the tab which is the small
rectangle on the top (note : a transparent package doesn't have shadow) :

show classes and packages context : To indicate if the context where the class/package is defined must be
written, and if yes, how. The context may be the “UML context” which is the path of the class/package in
the browser, or the C++ or Php namespace, or the Java package, or the Python package or at least the Idl
module. See class context and package context.

automatic labels position : To ask BOUML to move or to not move the associated labels on the relations in
a diagram when the relation is edited or the associated class pictures moved etc ...

show information note : to show or not the constraints through note

show stereotype properties : to indicate through a note the (non empty) value of the stereotype properties
in case the element is stereotyped by a stereotype part of a profile. By default the stereotype properties
are hidden.

color gradient : by default the elements are colored without gradient, you can ask for to use a diagonal,
vertical or horizontal gradient.

Browser Menu : duplicate

Clone the diagram in a new one

Browser Menu : delete

The delete entry is only present when the diagram is not read-only.

Delete the diagram and all its representation in the opened diagrams. After that it is possible to undelete it
(from the browser) until you close the project : obviously the deleted items are not saved !

Menu : mark

See mark

Browser Menu : tools

300

The menu entry tool is only present in case at least a plug-out may be applied on the diagram. The selected tool
is called and applied on the current diagram.

Picture menu

The diagram menu appearing with a right mouse click out off any item in the diagram picture is something like
these, supposing the diagram not read-only :

Picture Menu : add classes of the selected class view

Only appears when a class view is selected in the browser, all the classes of the class view whose are not yet
present in the diagram are added in the diagram, allowing to not have to do several drag & drop from the
browser to add these classes, but the position of the classes will probably not be the good one

Picture Menu : add marked elements

Only appears when a elements whose can be added in the diagram are marked in the browser, all these
elements whose are not yet present in the diagram are added in the diagram, allowing to not have to do several
drag & drop from the browser to them, but their position will probably not be the good one

Picture Menu : automatic layout

Place the classes depending on the relations/anchors linking them. Warning, if classes are drawn inside a
package before the auto layout (typically to show there are defined in this package), this will not be the case
after the auto layout. The automatic layout is computing by OGDF.

Picture Menu : edit drawing settings

see edit drawing settings.

Picture Menu : select all

Select all the items of the current diagram, may also be done through control a

Picture Menu : find selected browser element

To find in the diagram a representation of the elements selected in the browser

Picture Menu : optimal scale

301

Similar to the fit scale button, change scale to see all the diagram's elements at great as possible

Picture Menu : optimal window size

Similar to the button , change the size of the windows to see all the diagram's elements with the current
scale

Picture Menu : copy optimal picture part

Copy all the diagram elements, equivalent to a optimal windows size followed by a copy visible picture part
then a restore of the original windows size

Picture Menu : copy visible picture part

Put the visible part of the current diagram in the clipboard (copy), it is a screen copy, the current scale have
impact on the picture quality.

It is also possible to print all (not only the visible part) the current diagram on printer or a file through the
button

Picture Menu : save optimal picture part

To save all the diagram elements in a file, equivalent to a optimal windows size followed by a save visible
picture part then a restore of the original windows size

Picture Menu : save visible picture part

To save the visible part of the current diagram in a file, it is a screen copy, the current scale have impact on the
picture quality.

Picture Menu : set preferred size and scale

To memorize the current diagram sub window size and the current scale. These ones will be used the next time
the diagram will be opened.

Picture Menu : set preferred scale

To memorize the current scale. These one will be used the next time the diagram will be opened.

Picture Menu : restore preferred size and scale

In case a preferred sub window size and preferred scale was set, follow them.

Picture Menu : unset preferred and scale

To stop to define a preferred size and scale was set

Picture Menu : format

By default the diagram's canvas size is 840 x 1188 points corresponding to an iso A4 format (210*4 x 297*4),
all the predefined available formats are :

iso A5 : 592 x 840

iso A4 : 840 x 1188

iso A3 : 1188 x 1680

iso A2 : 1680 x 2376

iso A1 : 2376 x 3364

iso A0 : 3364 x 4756

USA A : 864 x 1116

USA B : 1116 x 1728

302

USA C : 1728 x 2236

USA D : 2236 x 3456

USA E : 3456 x 4472

USA Letter : 864 x 1116

USA Legal : 864 x 1424

USA Tabloid : 1116 x 1728

Each format also exists in landscape (it is Ledger in case of Tabloid)

The menu entry Custom allows to specify the size, the width and height can be set between 400 and 40000.

Picture Menu : undo changes

Undo all the changes made since the diagram was opened the last time. Note that the diagram is restored
independently of the the project saving. Obviously the deleted browser items was not restored !

Default stereotypes

The dialog allowing to set the default stereotypes has a tab reserved for the diagrams :

Drawing

303

A class diagram may contain classes, packages, fragment, notes, texts, diagram icons and the relations.

To place these elements in the diagram, use the buttons on the top (to create a new element or choose from the
already defined ones) then click at the appropriate position in the diagram, or grab the element from the
browser into the diagram.

To add a new relation between classes, select the appropriate relation through the buttons on the top of the
diagram sub window, click on the start class with the left mouse button, move the mouse, each time the mouse
button is raised a new line break is introduced, at least click on the end class. To abort a relation construction
press the right mouse button or do a double click with the left mouse button.

A line may be broken, during its construction of after clicking on the line with the left mouse button and
moving the mouse with the mouse button still pushed. To remove a line break, a double click on the point with
the left mouse button is enough, or use the line break menu of the point using the right mouse button.

By default the lines go to the center of their extremities, to decenter a line click near the desired extremity and
move the mouse click down. To come back to a center line, use the menu geometry

The scale may be changed from 30 up to 200 %. To allows to see the operation/message kinds even with a small
scale, the size of the arrows is unmodified.

fit% allows to set the largest scale allowing to show all the picture, as it is possible. Because of the scrollbar
management, hitting several times on fit% may give several scales.

Classically, the left mouse click may be used to select an element, or several when the control key is down, a
multiple selection may also be done defining a region using the mouse left click out of any element and moving
the mouse with the click and maintaining the click down. The diagram's elements may be moved after a left
mouse click on an element and maintaining the click down during the mouse move. The right mouse click is
used to show context dependent menus.

control s is a shortcut to save the project

control shift s is a shortcut to save the project in a new one

control p is a shortcut to print the active diagram

control a is a shortcut to select all the diagram's elements

control d is a shortcut to delete the selected element(s), the model is affected

suppr is a shortcut to remove the selected element(s) from the diagram, these elements are not deleted

control c is a shortcut to copy the selected diagram's elements

control x is a shortcut to cut (remove from diagram) the selected diagram's elements

control v is a shortcut to paste the selected diagram's elements

control z and control u are a shortcut of undo

304

control r and control y are a shortcut of redo

the keyboard arrows allow to move the selected items

You can define your own shortcut using the shortcut editor through the Miscellaneous menu.

The global menu miscellaneous allows you to show / hide a grid in the background of the diagram.

When several diagram's elements are selected, the menu appearing on a left mouse click allows to align or
resize or distribute them :

If all the selected elements has the same kind (for instance all are a class), you can edit their drawing settings
globally :

and for instance when the elements are classes in a class diagram :

305

The settings valuing <unchanged> are not changed for the selected elements, in the other case the same value
is set for all the elements.

You can also reuse the drawing settings set for the first selected element for the other selected elements.

Fragment

A fragment is resizeable. To change the fragment's name choose the edit entry of its menu or double click on it

A right mouse click on a note show the following menu :

Edit drawing settings allows to change the fill color

Note

A note may contain any text, a note is resizeable. To change the text of a note choose the edit entry of its menu
or double click on it, this open a window containing the text, close the window to end the edition :

306

A right click on the edited note calls a dialog allowing some text manipulations thanks Qt.

A right mouse click on a note show the following menu :

The font may be changed, by default the font is the one used to write the other texts.

The color of the text may be changed, a text is black by default.

Edit drawing settings allows to change the fill color

Select linked items select all the items connected this the current one through any line.

Text

Text is another way to write a text, contrary to the note a text is written alone (see “upper diagram :” on the
picture below), by default a text contains blabla: a text cannot be empty. The edition of a text is done like for a
note. A text is resizeable, a resize is not automatically done when the contains is modified.

A right mouse click on a text show the following menu :

Image

You can directly insert an image independently of the use of stereotype part of a profile, the size of the image is
followed when the zoom is 100%. You can resize them, to go back to the initial size of an image just edit it (for
instance through a double mouse clic on it) and confirm. Like for a profile the image can be specified through
an absolute path, or a path relative to the root directory for the icons or relative to the project directory. In
case the path of an icon is not absolute, the icon are searched first using the root directory for the icons, then
using the current directory, then using the project directory.

When you insert an image or edit one the following dialog appears :

A right mouse click on an image show the following menu :

307

Diagram icon

A diagram icon is a shortcut to a diagram, this allows to quickly navigate through the diagram without
limitation (a class or some other item kinds may be associated to only one diagram). The used icon indicates
the diagram kind, but its name is not written.

A double mouse left click on a diagram icon opens the diagram, the open entry of the diagram icon menu does
the same thing.

A right mouse click on a diagram icon show the following menu :

The other diagram's elements have an own chapter, refer to them.

Previous : collaboration diagram

Next : class composite diagram

308

Class composite diagram

The class composite diagrams can be placed in a class.

A class composite diagram is created through the Add composite diagram entry of the class browser menu.

Browser menu

The node menu appearing with a right mouse click on its representation in the browser is something like these,
supposing the diagram not read-only nor deleted :

Browser Menu : show

show allows to show the diagram picture, and edit it in case it is not read only.

Browser Menu : edit

edit allows to show/modify the diagram properties. In case the diagram is read-only, the fields of the dialog are
also read-only.

class composite diagram dialog, tab Uml

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it. The
stereotype of a diagram doesn't have a special meaning for BOUML.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note

309

that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Browser Menu : edit drawing settings

This dialog allows to specify how the items of the diagram must be drawn by default, you may choose default
for each value, in this case the effective value if specified in the upper level (which itself may specify default etc
... up to the project level).

automatic labels position : To ask BOUML to move or to not move the labels associated to the elements
when these last are moved.

draw all relations : to automatically draw or not the new connectors, obviously a connector will be added
in a diagram only when the start and end elements are drawn.

color gradient : by default the elements are colored without gradient, you can ask for to use a diagonal,
vertical or horizontal gradient.

Browser Menu : duplicate

Clone the diagram in a new one

Browser Menu : delete

The delete entry is only present when the diagram is not read-only.

Delete the diagram. After that it is possible to undelete it (from the browser) until you close the project :
obviously the deleted items are not saved !

Menu : mark

See mark

Browser Menu : tools

The menu entry tool is only present in case at least a plug-out may be applied on the diagram. The selected tool
is called and applied on the current diagram.

Picture menu

The diagram menu appearing with a right mouse click out off any item in the diagram picture is something like
these, supposing the diagram not read-only :

310

Picture Menu : edit drawing settings

see edit drawing settings.

Picture Menu : select all

Select all the items of the current diagram, may also be done through control a

Picture Menu : find selected browser element

To find in the diagram a representation of the elements selected in the browser

Picture Menu : optimal scale

Similar to the fit scale button, change scale to see all the diagram's elements at great as possible

Picture Menu : optimal window size

Similar to the button , change the size of the windows to see all the diagram's elements with the current
scale

Picture Menu : copy optimal picture part

Copy all the diagram elements, equivalent to a optimal windows size followed by a copy visible picture part
then a restore of the original windows size

Picture Menu : copy visible picture part

Put the visible part of the current diagram in the clipboard (copy), it is a screen copy, the current scale have
impact on the picture quality.

It is also possible to print all (not only the visible part) the current diagram on printer or a file through the
button

Picture Menu : save optimal picture part

To save all the diagram elements in a file, equivalent to a optimal windows size followed by a save visible
picture part then a restore of the original windows size

Picture Menu : save visible picture part

To save the visible part of the current diagram in a file, it is a screen copy, the current scale have impact on the
picture quality.

Picture Menu : set preferred size and scale

311

To memorize the current diagram sub window size and the current scale. These ones will be used the next time
the diagram will be opened.

Picture Menu : set preferred scale

To memorize the current scale. These one will be used the next time the diagram will be opened.

Picture Menu : restore preferred size and scale

In case a preferred sub window size and preferred scale was set, follow them.

Picture Menu : unset preferred and scale

To stop to define a preferred size and scale was set

Picture Menu : format

By default the diagram's canvas size is 840 x 1188 points corresponding to an iso A4 format (210*4 x 297*4),
all the predefined available formats are :

iso A5 : 592 x 840

iso A4 : 840 x 1188

iso A3 : 1188 x 1680

iso A2 : 1680 x 2376

iso A1 : 2376 x 3364

iso A0 : 3364 x 4756

USA A : 864 x 1116

USA B : 1116 x 1728

USA C : 1728 x 2236

USA D : 2236 x 3456

USA E : 3456 x 4472

USA Letter : 864 x 1116

USA Legal : 864 x 1424

USA Tabloid : 1116 x 1728

Each format also exists in landscape (it is Ledger in case of Tabloid)

The menu entry Custom allows to specify the size, the width and height can be set between 400 and 40000.

Picture Menu : undo changes

Undo all the changes made since the diagram was opened the last time. Note that the diagram is restored
independently of the the project saving. Obviously the deleted browser items was not restored !

Default stereotypes

The dialog allowing to set the default stereotypes has a tab reserved for the diagrams :

312

Drawing

A class composite diagram may contain role/part, fragment (a priori to indicate the class the composite
diagram describes), notes, texts, and the connectors.

To place these elements in the diagram, use the buttons on the top (to create a new element or choose from the
already defined ones) then click at the appropriate position in the diagram, or grab the element from the
browser into the diagram :

If you drop an attribute of the class owning the diagram and that attribute is typed by a class, a new part
is added to the class, named by the name of the attribute and typed by the type of the attribute, and of
course that part is added into the composite diagram.

If you drop a composition of the class owning the diagram, a new part is added to the class, named by the
role of the composition and typed by the type of the role, and of course that part is added into the
composite diagram.

If you drop a relation of the class owning the diagram not being a composition, a new role is added to the
class, named by the role of the composition and typed by the type of the role, and of course that role is
added into the composite diagram.

Of course you can also drop role, part and connector of the class owning the diagram

To add a new connector between roles/parts/ports, select the connector button on the top of the diagram sub
window, click on the start element with the left mouse button, move the mouse, each time the mouse button is
raised a new line break is introduced, at least click on the end element. To abort a relation construction press
the right mouse button or do a double click with the left mouse button. In case of a port the start/end must be
done on the middle square.

A line may be broken, during its construction of after clicking on the line with the left mouse button and

313

moving the mouse with the mouse button still pushed. To remove a line break, a double click on the point with
the left mouse button is enough, or use the line break menu of the point using the right mouse button.

By default the lines go to the center of their extremities, to decenter a line click near the desired extremity and
move the mouse click down. To come back to a center line, use the menu geometry

The scale may be changed from 30 up to 200 %. To allows to see the operation/message kinds even with a small
scale, the size of the arrows is unmodified.

fit% allows to set the largest scale allowing to show all the picture, as it is possible. Because of the scrollbar
management, hitting several times on fit% may give several scales.

Classically, the left mouse click may be used to select an element, or several when the control key is down, a
multiple selection may also be done defining a region using the mouse left click out of any element and moving
the mouse with the click and maintaining the click down. The diagram's elements may be moved after a left
mouse click on an element and maintaining the click down during the mouse move. The right mouse click is
used to show context dependent menus.

control s is a shortcut to save the project

control shift s is a shortcut to save the project in a new one

control p is a shortcut to print the active diagram

control a is a shortcut to select all the diagram's elements

control d is a shortcut to delete the selected element(s), the model is affected

suppr is a shortcut to remove the selected element(s) from the diagram, these elements are not deleted

control c is a shortcut to copy the selected diagram's elements

control x is a shortcut to cut (remove from diagram) the selected diagram's elements

control v is a shortcut to paste the selected diagram's elements

control z and control u are a shortcut of undo

control r and control y are a shortcut of redo

the keyboard arrows allow to move the selected items

You can define your own shortcut using the shortcut editor through the Miscellaneous menu.

The global menu miscellaneous allows you to show / hide a grid in the background of the diagram.

When several diagram's elements are selected, the menu appearing on a left mouse click allows to align or
resize or distribute them :

314

If all the selected elements has the same kind (for instance all are a part/role), you can edit their drawing
settings globally :

You can also reuse the drawing settings set for the first selected element for the other selected elements
through the entry Same drawing settings.

Fragment

A fragment is resizeable. To change the fragment's name choose the edit entry of its menu or double click on it

A right mouse click on a note show the following menu :

Edit drawing settings allows to change the fill color

Note

A note may contain any text, a note is resizeable. To change the text of a note choose the edit entry of its menu
or double click on it, this open a window containing the text, close the window to end the edition :

315

A right click on the edited note calls a dialog allowing some text manipulations thanks Qt.

A right mouse click on a note show the following menu :

The font may be changed, by default the font is the one used to write the other texts.

The color of the text may be changed, a text is black by default.

Edit drawing settings allows to change the fill color

Select linked items select all the items connected this the current one through any line.

Text

Text is another way to write a text, contrary to the note a text is written alone (see “upper diagram :” on the
picture below), by default a text contains blabla: a text cannot be empty. The edition of a text is done like for a
note. A text is resizeable, a resize is not automatically done when the contains is modified.

A right mouse click on a text show the following menu :

Image

You can directly insert an image independently of the use of stereotype part of a profile, the size of the image is
followed when the zoom is 100%. You can resize them, to go back to the initial size of an image just edit it (for
instance through a double mouse clic on it) and confirm. Like for a profile the image can be specified through
an absolute path, or a path relative to the root directory for the icons or relative to the project directory. In
case the path of an icon is not absolute, the icon are searched first using the root directory for the icons, then
using the current directory, then using the project directory.

When you insert an image or edit one the following dialog appears :

316

A right mouse click on an image show the following menu :

Previous : class diagram

Next : object diagram

317

Object diagram

The object diagrams may be placed in a use case view, a use case or a class view

An object diagram is created through the new object diagram entry of the use case view, use case and class
view browser menus.

Browser menu

The node menu appearing with a right mouse click on its representation in the browser is something like these,
supposing the diagram not read-only nor deleted :

Browser Menu : show

show allows to show the diagram picture, and edit it in case it is not read only.

Browser Menu : edit

edit allows to show/modify the diagram properties. In case the diagram is read-only, the fields of the dialog are
also read-only.

object diagram dialog, tab Uml

318

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it. The
stereotype of a diagram doesn't have a special meaning for BOUML.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Browser Menu : edit drawing settings

This dialog allows to specify how the items of the diagram must be drawn by default, you may choose default
for each value, in this case the effective value if specified in the upper level (which itself may specify default etc
... up to the project level).

write class instance horizontally : To write the instance type and name on the same line, or on two lines

package name in tab : to indicate if the package's name must be written in the tab which is the small
rectangle on the top (note : a transparent package doesn't have shadow) :

show classes and packages context : to indicate if the context where the class/package is defined must be
written, it is not the case just above for a package. The context may be the “UML context” which is the
path of the package in the browser (choice followed for awt below), or the C++ / Php namespace specified
by the package, or the Java package specified by the package (choice followed for picture below), or the
Python package specified by the package or at least the Idl module, for instance for a package :

automatic labels position : To ask BOUML to move or to not move the associated labels on the relations in
a diagram when the relation is edited or the associated class pictures moved etc ...

show stereotype properties : to indicate through a note the (non empty) value of the stereotype properties
in case the object is stereotyped by a stereotype part of a profile. By default the stereotype properties are
hidden.

color gradient : by default the elements are colored without gradient, you can ask for to use a diagonal,
vertical or horizontal gradient.

Browser Menu : duplicate

Clone the diagram in a new one

319

Browser Menu : delete

The delete entry is only present when the diagram is not read-only.

Delete the diagram and all its representation in the opened diagrams. After that it is possible to undelete it
(from the browser) until you close the project : obviously the deleted items are not saved !

Menu : mark

See mark

Browser Menu : tools

The menu entry tool is only present in case at least a plug-out may be applied on the diagram. The selected tool
is called and applied on the current diagram.

Picture menu

The diagram menu appearing with a right mouse click out off any item in the diagram picture is something like
these, supposing the diagram not read-only :

Picture Menu : edit drawing settings

see edit drawing settings.

Picture Menu : select all

Select all the items of the current diagram, also done through a control a

Picture Menu : find selected browser element

To find in the diagram a representation of the elements selected in the browser

Picture Menu : optimal scale

similar to the fit scale button, change scale to see all the diagram's elements at great as possible

Picture Menu : optimal window size

Similar to the button , change the size of the windows to see all the diagram's elements with the current
scale

Picture Menu : copy optimal picture part

320

Copy all the diagram elements, equivalent to a optimal windows size followed by a copy visible picture part
then a restore of the original windows size

Picture Menu : copy visible part

Put the visible part of the current diagram in the clipboard (copy), it is a screen copy, the current scale have
impact on the picture quality.

It is also possible to print all (not only the visible part) the current diagram on printer or a file through the
button

Picture Menu : save optimal picture part

To save all the diagram elements in a file, equivalent to a optimal windows size followed by a save visible
picture part then a restore of the original windows size

Picture Menu : save visible picture part

To save the visible part of the current diagram in a file, it is a screen copy, the current scale have impact on the
picture quality.

Picture Menu : set preferred size and scale

To memorize the current diagram sub window size and the current scale. These ones will be used the next time
the diagram will be opened.

Picture Menu : set preferred scale

To memorize the current scale. These one will be used the next time the diagram will be opened.

Picture Menu : restore preferred size and scale

In case a preferred sub window size and preferred scale was set, follow them.

Picture Menu : unset preferred and scale

To stop to define a preferred size and scale was set

Picture Menu : format

By default the diagram's canvas size is 840 x 1188 points corresponding to an iso A4 format (210*4 x 297*4),
all the predefined available formats are :

iso A5 : 592 x 840

iso A4 : 840 x 1188

iso A3 : 1188 x 1680

iso A2 : 1680 x 2376

iso A1 : 2376 x 3364

iso A0 : 3364 x 4756

USA A : 864 x 1116

USA B : 1116 x 1728

USA C : 1728 x 2236

USA D : 2236 x 3456

USA E : 3456 x 4472

USA Letter : 864 x 1116

USA Legal : 864 x 1424

USA Tabloid : 1116 x 1728

321

Each format also exists in landscape (it is Ledger in case of Tabloid)

The menu entry Custom allows to specify the size, the width and height can be set between 400 and 40000.

Picture Menu : undo changes

Undo all the changes made since the diagram was opened the last time. Note that the diagram is restored
independently of the the project saving. Obviously the deleted browser items was not restored !

Link Menu

The menu appearing with a right mouse click on link is something like these, supposing the diagram not read-
only (in the first case the link is doesn't have an associated relation) :

Link Menu : edit

edit allows to choose the relation supported by the link, the available relations depends on the type of each
extremities, the current relation (if set) is shown by the selection :

Link Menu : select relation in browser

Is of course only available when the relation is set

Message Menu : select labels

Of course only available when the relation is set, to select the labels (relation's name, stereotypes, role(s) and
multiplicity(ies)) associated to the relation. Useful when you are lost after many label movings.

Message Menu : labels default position

Of course only available when the relation is set, to place the roles's name associated to the relation in the
default position. Useful when you are lost after many label movings.

By default when you move a class instance or a link point break or edit the link, the labels are moved to their
default position, this may be irritating. To ask BOUML to not move the labels in a diagram, use the drawing
settings of the diagrams.

Class instance Menu

322

The menu appearing with a right mouse click on a class instance is something like this, supposing the diagram
not read-only :

Contrarily to the sequence and collaboration diagrams, an object diagram show modeled instances : there is no
pure graphical instances.

Message Menu : edit drawing settings

This dialog allows to specify how a the class instance must be drawn, you may choose default for each value, in
this case the effective value if specified in the upper level (which itself may specify default etc ... up to the
project level).

write class instance horizontaly : To write the instance type and name on the same line, or on two lines.

Default stereotypes

The dialog allowing to set the default stereotypes has a tab reserved for the diagrams :

323

Drawing

An object diagram may contain classes instances, notes, texts, diagram icons, packages, fragment and links.

To place these elements in the diagram, use the buttons on the top (to create a new element or choose from the
already defined ones) then click at the appropriate position in the diagram, or grab the element from the
browser into the diagram.

To show a relation between two class instances, add a link between the instance then edit the link through a
double click or through a right mouse click.

The scale may be changed from 30 up to 200 %. To allows to see the relation kinds even with a small scale, the
size of the arrows is unmodified.

fit% allows to set the largest scale allowing to show all the picture, as it is possible. Because of the scrollbar
management, hitting several times on fit% may give several scales.

Classically, the left mouse click may be used to select an element, or several when the control key is down, a
multiple selection may also be done defining a region using the mouse left click out of any element and moving
the mouse with the click and maintaining the click down. The diagram's elements may be moved after a left
mouse click on an element and maintaining the click down during the mouse move. The right mouse click is
used to show context dependent menus.

control s is a shortcut to save the project

control shift s is a shortcut to save the project in a new one

control p is a shortcut to print the active diagram

control a is a shortcut to select all the diagram's elements

control d is a shortcut to delete the selected element(s), the model is affected

suppr is a shortcut to remove the selected element(s) from the diagram, these elements are not deleted

control c is a shortcut to copy the selected diagram's elements

control x is a shortcut to cut (remove from diagram) the selected diagram's elements

control v is a shortcut to paste the selected diagram's elements

control z and control u are a shortcut of undo

control r and control y are a shortcut of redo

the keyboard arrows allow to move the selected items

You can define your own shortcut using the shortcut editor through the Miscellaneous menu.

The global menu miscellaneous allows you to show / hide a grid in the background of the diagram.

When several diagram's elements are selected, the menu appearing on a left mouse click allows to align or

324

resize or distribute them :

If all the selected elements has the same kind (for instance all are a class), you edit their drawing settings
globally :

and for instance when the elements are notes :

The settings valuing <unchanged> are not changed for the selected elements, in the other case the same value
is set for all the elements.

You can also reuse the drawing settings set for the first selected element for the other selected elements.

Note

A note may contain any text, a note is resizeable. To change the text of a note choose the edit entry of its menu

325

or double click on it, this open a window containing the text, close the window to end the edition :

A right click on the edited note calls a dialog allowing some text manipulations thanks Qt.

A right mouse click on a note show the following menu :

The font may be changed, by default the font is the one used to write the other texts.

The color of the text may be changed, a text is black by default.

Edit drawing settings allows to change the fill color

Select linked items select all the items connected this the current one through any line.

Text

Text is another way to write a text, contrary to the note a text is written alone (see “upper diagram :” on the
picture below), by default a text contains blabla: a text cannot be empty. The edition of a text is done like for a
note. A text is resizeable, a resize is not automatically done when the contains is modified.

A right mouse click on a text show the following menu :

Image

You can directly insert an image independently of the use of stereotype part of a profile, the size of the image is
followed when the zoom is 100%. You can resize them, to go back to the initial size of an image just edit it (for
instance through a double mouse clic on it) and confirm. Like for a profile the image can be specified through
an absolute path, or a path relative to the root directory for the icons or relative to the project directory. In
case the path of an icon is not absolute, the icon are searched first using the root directory for the icons, then
using the current directory, then using the project directory.

When you insert an image or edit one the following dialog appears :

326

A right mouse click on an image show the following menu :

Diagram icon

A diagram icon is a shortcut to a diagram, this allows to quickly navigate through the diagram without
limitation (a class or some other item kinds may be associated to only one diagram). The used icon indicates
the diagram kind, but its name is not written.

A double mouse left click on a diagram icon opens the diagram, the open entry of the diagram icon menu does
the same thing.

A right mouse click on a diagram icon show the following menu :

The other diagram's elements have an own chapter, refer to them.

Previous : class composite diagram

Next : object composite diagram

327

Object composite diagram

The object composite diagrams can be placed in a class instance

An object composite diagram is created through the Add composite diagram entry of the class instance browser
menu.

Browser menu

The node menu appearing with a right mouse click on its representation in the browser is something like these,
supposing the diagram not read-only nor deleted :

Browser Menu : show

show allows to show the diagram picture, and edit it in case it is not read only.

Browser Menu : edit

edit allows to show/modify the diagram properties. In case the diagram is read-only, the fields of the dialog are
also read-only.

object composite diagram dialog, tab Uml

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the

328

current one (empty here). It is possible to choose into the list or to give a new one, or to empty it. The
stereotype of a diagram doesn't have a special meaning for BOUML.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Browser Menu : edit drawing settings

This dialog allows to specify how the items of the diagram must be drawn by default, you may choose default
for each value, in this case the effective value if specified in the upper level (which itself may specify default etc
... up to the project level).

automatic labels position : To ask BOUML to move or to not move the labels associated to the elements
when these last are moved.

draw all relations : to automatically draw or not the new connectors, obviously a connector will be added
in a diagram only when the start and end elements are drawn.

color gradient : by default the elements are colored without gradient, you can ask for to use a diagonal,
vertical or horizontal gradient.

Browser Menu : duplicate

Clone the diagram in a new one

Browser Menu : delete

The delete entry is only present when the diagram is not read-only.

Delete the diagram. After that it is possible to undelete it (from the browser) until you close the project :
obviously the deleted items are not saved !

Menu : mark

See mark

Browser Menu : tools

The menu entry tool is only present in case at least a plug-out may be applied on the diagram. The selected tool
is called and applied on the current diagram.

Picture menu

The diagram menu appearing with a right mouse click out off any item in the diagram picture is something like
these, supposing the diagram not read-only :

329

Picture Menu : edit drawing settings

see edit drawing settings.

Picture Menu : select all

Select all the items of the current diagram, may also be done through control a

Picture Menu : find selected browser element

To find in the diagram a representation of the elements selected in the browser

Picture Menu : optimal scale

Similar to the fit scale button, change scale to see all the diagram's elements at great as possible

Picture Menu : optimal window size

Similar to the button , change the size of the windows to see all the diagram's elements with the current
scale

Picture Menu : copy optimal picture part

Copy all the diagram elements, equivalent to a optimal windows size followed by a copy visible picture part
then a restore of the original windows size

Picture Menu : copy visible picture part

Put the visible part of the current diagram in the clipboard (copy), it is a screen copy, the current scale have
impact on the picture quality.

It is also possible to print all (not only the visible part) the current diagram on printer or a file through the
button

Picture Menu : save optimal picture part

To save all the diagram elements in a file, equivalent to a optimal windows size followed by a save visible
picture part then a restore of the original windows size

Picture Menu : save visible picture part

To save the visible part of the current diagram in a file, it is a screen copy, the current scale have impact on the
picture quality.

Picture Menu : set preferred size and scale

330

To memorize the current diagram sub window size and the current scale. These ones will be used the next time
the diagram will be opened.

Picture Menu : set preferred scale

To memorize the current scale. These one will be used the next time the diagram will be opened.

Picture Menu : restore preferred size and scale

In case a preferred sub window size and preferred scale was set, follow them.

Picture Menu : unset preferred and scale

To stop to define a preferred size and scale was set

Picture Menu : format

By default the diagram's canvas size is 840 x 1188 points corresponding to an iso A4 format (210*4 x 297*4),
all the predefined available formats are :

iso A5 : 592 x 840

iso A4 : 840 x 1188

iso A3 : 1188 x 1680

iso A2 : 1680 x 2376

iso A1 : 2376 x 3364

iso A0 : 3364 x 4756

USA A : 864 x 1116

USA B : 1116 x 1728

USA C : 1728 x 2236

USA D : 2236 x 3456

USA E : 3456 x 4472

USA Letter : 864 x 1116

USA Legal : 864 x 1424

USA Tabloid : 1116 x 1728

Each format also exists in landscape (it is Ledger in case of Tabloid)

The menu entry Custom allows to specify the size, the width and height can be set between 400 and 40000.

Picture Menu : undo changes

Undo all the changes made since the diagram was opened the last time. Note that the diagram is restored
independently of the the project saving. Obviously the deleted browser items was not restored !

Default stereotypes

The dialog allowing to set the default stereotypes has a tab reserved for the diagrams :

331

Drawing

An object composite diagram may contain role/part instance, fragment (a priori to indicate the object the
composite diagram describes), notes, texts, and the connectors.

To place these elements in the diagram, use the buttons on the top (to create a new element or choose from the
already defined ones) then click at the appropriate position in the diagram, or grab the element from the
browser into the diagram :

To add a new connector between roles/parts/ports instances, select the connector button on the top of the
diagram sub window, click on the start element with the left mouse button, move the mouse, each time the
mouse button is raised a new line break is introduced, at least click on the end element. To abort a relation
construction press the right mouse button or do a double click with the left mouse button. In case of a port the
start/end must be done on the middle square.

A line may be broken, during its construction of after clicking on the line with the left mouse button and
moving the mouse with the mouse button still pushed. To remove a line break, a double click on the point with
the left mouse button is enough, or use the line break menu of the point using the right mouse button.

By default the lines go to the center of their extremities, to decenter a line click near the desired extremity and
move the mouse click down. To come back to a center line, use the menu geometry

The scale may be changed from 30 up to 200 %. To allows to see the operation/message kinds even with a small
scale, the size of the arrows is unmodified.

fit% allows to set the largest scale allowing to show all the picture, as it is possible. Because of the scrollbar

332

management, hitting several times on fit% may give several scales.

Classically, the left mouse click may be used to select an element, or several when the control key is down, a
multiple selection may also be done defining a region using the mouse left click out of any element and moving
the mouse with the click and maintaining the click down. The diagram's elements may be moved after a left
mouse click on an element and maintaining the click down during the mouse move. The right mouse click is
used to show context dependent menus.

control s is a shortcut to save the project

control shift s is a shortcut to save the project in a new one

control p is a shortcut to print the active diagram

control a is a shortcut to select all the diagram's elements

control d is a shortcut to delete the selected element(s), the model is affected

suppr is a shortcut to remove the selected element(s) from the diagram, these elements are not deleted

control c is a shortcut to copy the selected diagram's elements

control x is a shortcut to cut (remove from diagram) the selected diagram's elements

control v is a shortcut to paste the selected diagram's elements

control z and control u are a shortcut of undo

control r and control y are a shortcut of redo

the keyboard arrows allow to move the selected items

You can define your own shortcut using the shortcut editor through the Miscellaneous menu.

The global menu miscellaneous allows you to show / hide a grid in the background of the diagram.

When several diagram's elements are selected, the menu appearing on a left mouse click allows to align or
resize or distribute them :

333

If all the selected elements has the same kind (for instance all are a part/role), you can edit their drawing
settings globally :

You can also reuse the drawing settings set for the first selected element for the other selected elements
through the entry Same drawing settings.

Fragment

A fragment is resizeable. To change the fragment's name choose the edit entry of its menu or double click on it

A right mouse click on a note show the following menu :

Edit drawing settings allows to change the fill color

Note

A note may contain any text, a note is resizeable. To change the text of a note choose the edit entry of its menu
or double click on it, this open a window containing the text, close the window to end the edition :

A right click on the edited note calls a dialog allowing some text manipulations thanks Qt.

A right mouse click on a note show the following menu :

334

The font may be changed, by default the font is the one used to write the other texts.

The color of the text may be changed, a text is black by default.

Edit drawing settings allows to change the fill color

Select linked items select all the items connected this the current one through any line.

Text

Text is another way to write a text, contrary to the note a text is written alone (see “upper diagram :” on the
picture below), by default a text contains blabla: a text cannot be empty. The edition of a text is done like for a
note. A text is resizeable, a resize is not automatically done when the contains is modified.

A right mouse click on a text show the following menu :

Image

You can directly insert an image independently of the use of stereotype part of a profile, the size of the image is
followed when the zoom is 100%. You can resize them, to go back to the initial size of an image just edit it (for
instance through a double mouse clic on it) and confirm. Like for a profile the image can be specified through
an absolute path, or a path relative to the root directory for the icons or relative to the project directory. In
case the path of an icon is not absolute, the icon are searched first using the root directory for the icons, then
using the current directory, then using the project directory.

When you insert an image or edit one the following dialog appears :

A right mouse click on an image show the following menu :

335

Previous : object diagram

Next : state diagram

336

State diagram

The state diagrams may be placed in a state

A state diagram is created through the new state diagram entry of the state browser menus.

Browser menu

The node menu appearing with a right mouse click on its representation in the browser is something like these,
supposing the diagram not read-only nor deleted :

Browser Menu : show

show allows to show the diagram picture, and edit it in case it is not read only.

Browser Menu : edit

edit allows to show/modify the diagram properties. In case the diagram is read-only, the fields of the dialog are
also read-only.

State diagram dialog, tab Uml

337

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it. The
stereotype of a diagram doesn't have a special meaning for BOUML.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Browser Menu : edit drawing settings

This dialog allows to specify how the items of the diagram must be drawn by default, you may choose default
for each value, in this case the effective value if specified in the upper level (which itself may specify default etc
... up to the project level).

show packages context : To indicate if the context where the package is defined must be written, and if
yes, how. The context may be the “UML context” which is the path of the package in the browser, or the
C++ / Php namespace, or the Java package or at least the Idl module. See package context.

automatic labels position : To ask BOUML to move or to not move the associated labels on the relations in
a diagram when the relation is edited or the associated State pictures moved etc ...

write transition horizontally : to write the transition's trigger, guard constraint and activity on only one
line or each one on a different line.

show transition definition : to write the name of the transition or its trigger, guard constraint and activity

338

color gradient : by default the elements are colored without gradient, you can ask for to use a diagonal,
vertical or horizontal gradient.

show state activities : to show or not the state's activities in a compartment depending on the drawing
language.

draw state's regions horizontally : to indicate if the regions are drawn horizontally or vertically, for
instance :

Note : the regions are not visible while the state picture is too small.

drawing language : to indicate in which language the transition and state's compartment must be written

show stereotype properties : to indicate through a note the (non empty) value of the stereotype properties
in case the element is stereotyped by a stereotype part of a profile. By default the stereotype properties
are hidden.

Browser Menu : duplicate

Clone the diagram in a new one

Browser Menu : delete

The delete entry is only present when the diagram is not read-only.

Delete the diagram and all its representation in the opened diagrams. After that it is possible to undelete it
(from the browser) until you close the project : obviously the deleted items are not saved !

Menu : mark

See mark

Browser Menu : tools

The menu entry tool is only present in case at least a plug-out may be applied on the diagram. The selected tool
is called and applied on the current diagram.

Picture menu

The diagram menu appearing with a right mouse click out off any item in the diagram picture is something like
these, supposing the diagram not read-only :

339

Picture Menu : edit drawing settings

see edit drawing settings.

Picture Menu : select all

Select all the items of the current diagram, may also be done through control a

Picture Menu : optimal scale

similar to the fit scale button, change scale to see all the diagram's elements at great as possible

Picture Menu : optimal window size

change the size of the windows to see all the diagram's elements with the current scale

Picture Menu : copy optimal picture part

Copy all the diagram elements, equivalent to a optimal windows size followed by a copy visible picture part
then a restore of the original windows size

Picture Menu : copy visible picture part

Put the visible part of the current diagram in the clipboard (copy), it is a screen copy, the current scale have
impact on the picture quality.

It is also possible to print all (not only the visible part) the current diagram on printer or a file through the
button

Picture Menu : save optimal picture part

To save all the diagram elements in a file, equivalent to a optimal windows size followed by a save visible
picture part then a restore of the original windows size

Picture Menu : save visible picture part

To save the visible part of the current diagram in a file, it is a screen copy, the current scale have impact on the
picture quality.

Picture Menu : set preferred size and scale

To memorize the current diagram sub window size and the current scale. These ones will be used the next time
the diagram will be opened.

Picture Menu : set preferred scale

340

To memorize the current scale. These one will be used the next time the diagram will be opened.

Picture Menu : restore preferred size and scale

In case a preferred sub window size and preferred scale was set, follow them.

Picture Menu : unset preferred and scale

To stop to define a preferred size and scale was set

Picture Menu : format

By default the diagram's canvas size is 840 x 1188 points corresponding to an iso A4 format (210*4 x 297*4),
all the predefined available formats are :

iso A5 : 592 x 840

iso A4 : 840 x 1188

iso A3 : 1188 x 1680

iso A2 : 1680 x 2376

iso A1 : 2376 x 3364

iso A0 : 3364 x 4756

USA A : 864 x 1116

USA B : 1116 x 1728

USA C : 1728 x 2236

USA D : 2236 x 3456

USA E : 3456 x 4472

USA Letter : 864 x 1116

USA Legal : 864 x 1424

USA Tabloid : 1116 x 1728

Each format also exists in landscape (it is Ledger in case of Tabloid)

The menu entry Custom allows to specify the size, the width and height can be set between 400 and 40000.

Picture Menu : undo changes

Undo all the changes made since the diagram was opened the last time. Note that the diagram is restored
independently of the the project saving. Obviously the deleted browser items was not restored !

Default stereotypes

The dialog allowing to set the default stereotypes has a tab reserved for the diagrams :

341

Drawing

A state diagram may contain states, packages, fragment, notes, texts, diagram icons, pseudo states and the
transitions.

To place these elements in the diagram, use the buttons on the top (to create a new element or choose from the
already defined ones) then click at the appropriate position in the diagram, or grab the element from the
browser into the diagram.

Warning : when you use the buttons to add a state or pseudo state and you click on a state drawing, the new
state will be nested in the other state. In case you place the new state or pseudo state out of any state drawing,
the new one will be nested in state owning the diagram.

To add a new relation between states and pseudo states, select the appropriate relation through the buttons on
the top of the diagram sub window, click on the start state or pseudo state with the left mouse button, move the
mouse, each time the mouse button is raised a new line break is introduced, at least click on the end state or
pseudo state. To abort a relation construction press the right mouse button or do a double click with the left

342

mouse button.

A line may be broken, during its construction of after clicking on the line with the left mouse button and
moving the mouse with the mouse button still pushed. To remove a line break, a double click on the point with
the left mouse button is enough, or use the line break menu of the point using the right mouse button.

By default the lines go to the center of their extremities, to decenter a line click near the desired extremity and
move the mouse click down. To come back to a center line, use the menu geometry

The scale may be changed from 30 up to 200 %. To allows to see the operation/message kinds even with a small
scale, the size of the arrows is unmodified.

fit% allows to set the largest scale allowing to show all the picture, as it is possible. Because of the scrollbar
management, hitting several times on fit% may give several scales.

Classically, the left mouse click may be used to select an element, or several when the control key is down, a
multiple selection may also be done defining a region using the mouse left click out of any element and moving
the mouse with the click and maintaining the click down. The diagram's elements may be moved after a left
mouse click on an element and maintaining the click down during the mouse move. The right mouse click is
used to show context dependent menus.

control s is a shortcut to save the project

control shift s is a shortcut to save the project in a new one

control p is a shortcut to print the active diagram

control a is a shortcut to select all the diagram's elements

control d is a shortcut to delete the selected element(s), the model is affected

suppr is a shortcut to remove the selected element(s) from the diagram, these elements are not deleted

control c is a shortcut to copy the selected diagram's elements

control x is a shortcut to cut (remove from diagram) the selected diagram's elements

control v is a shortcut to paste the selected diagram's elements

control z and control u are a shortcut of undo

control r and control y are a shortcut of redo

the keyboard arrows allow to move the selected items

You can define your own shortcut using the shortcut editor through the Miscellaneous menu.

The global menu miscellaneous allows you to show / hide a grid in the background of the diagram.

When several diagram's elements are selected, the menu appearing on a left mouse click allows to align or
resize or distribute them :

343

If all the selected elements has the same kind (for instance all are a state), you edit their drawing settings
globally :

and for instance when the elements are notes :

The settings valuing <unchanged> are not changed for the selected elements, in the other case the same value
is set for all the elements.

You can also reuse the drawing settings set for the first selected element for the other selected elements.

Fragment

A fragment is resizeable. To change the fragment's name choose the edit entry of its menu or double click on it

A right mouse click on a note show the following menu :

Edit drawing settings allows to change the fill color

344

Note

A note may contain any text, a note is resizeable. To change the text of a note choose the edit entry of its menu
or double click on it, this open a window containing the text, close the window to end the edition :

A right click on the edited note calls a dialog allowing some text manipulations thanks Qt.

A right mouse click on a note show the following menu :

The font may be changed, by default the font is the one used to write the other texts.

The color of the text may be changed, a text is black by default.

Edit drawing settings allows to change the fill color

Select linked items select all the items connected this the current one through any line.

Text

Text is another way to write a text, contrary to the note a text is written alone (see “upper diagram :” on the
picture below), by default a text contains blabla: a text cannot be empty. The edition of a text is done like for a
note. A text is resizeable, a resize is not automatically done when the contains is modified.

A right mouse click on a text show the following menu :

Image

You can directly insert an image independently of the use of stereotype part of a profile, the size of the image is
followed when the zoom is 100%. You can resize them, to go back to the initial size of an image just edit it (for
instance through a double mouse clic on it) and confirm. Like for a profile the image can be specified through
an absolute path, or a path relative to the root directory for the icons or relative to the project directory. In
case the path of an icon is not absolute, the icon are searched first using the root directory for the icons, then
using the current directory, then using the project directory.

When you insert an image or edit one the following dialog appears :

345

A right mouse click on an image show the following menu :

Diagram icon

A diagram icon is a shortcut to a diagram, this allows to quickly navigate through the diagram without
limitation (a class or some other item kinds may be associated to only one diagram). The used icon indicates
the diagram kind, but its name is not written.

A double mouse left click on a diagram icon opens the diagram, the open entry of the diagram icon menu does
the same thing.

A right mouse click on a diagram icon show the following menu :

The other diagram's elements have an own chapter, refer to them.

Previous : object composite diagram

Next : activity diagram

346

Activity diagram

The activity diagrams may be placed in an activity

A activity diagram is created through the new activity diagram entry of the activity browser menus.

Browser menu

The node menu appearing with a right mouse click on its representation in the browser is something like these,
supposing the diagram not read-only nor deleted :

Browser Menu : show

show allows to show the diagram picture, and edit it in case it is not read only.

Browser Menu : edit

edit allows to show/modify the diagram properties. In case the diagram is read-only, the fields of the dialog are
also read-only.

Activity diagram dialog, tab Uml

347

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it. The
stereotype of a diagram doesn't have a special meaning for BOUML.

The editor button visible above and associated here to the description, allows to edit the description in an
other window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note
that this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Browser Menu : edit drawing settings

This dialog allows to specify how the items of the diagram must be drawn by default, you may choose default
for each value, in this case the effective value if specified in the upper level (which itself may specify default etc
... up to the project level).

show packages context : To indicate if the context where the package is defined must be written, and if
yes, how. The context may be the “UML context” which is the path of the package in the browser, or the
C++ or Php namespace, or the Java package or at least the Idl module. See package context.

automatic labels position : To ask BOUML to move or to not move the associated labels on the relations in
a diagram when the relation is edited or the associated Activity pictures moved etc ...

write flow label horizontally : to write the flow description on only one line or each information on a
different line.

show opaque action definition : to write the name of an opaque action or its behavior definition.

color gradient : by default the elements are colored without gradient, you can ask for to use a diagonal,
vertical or horizontal gradient.

show information note : to show or not the notes associated to the condition, selection and transformation,
and also to write or not the activity's conditions.

show stereotype properties : to indicate through a note the (non empty) value of the stereotype properties
in case the element is stereotyped by a stereotype part of a profile. By default the stereotype properties

348

are hidden.

drawing language : to indicate which language must be used to write the definitions

Browser Menu : duplicate

Clone the diagram in a new one

Browser Menu : delete

The delete entry is only present when the diagram is not read-only.

Delete the diagram and all its representation in the opened diagrams. After that it is possible to undelete it
(from the browser) until you close the project : obviously the deleted items are not saved !

Menu : mark

See mark

Browser Menu : tools

The menu entry tool is only present in case at least a plug-out may be applied on the diagram. The selected tool
is called and applied on the current diagram.

Picture menu

The diagram menu appearing with a right mouse click out off any item in the diagram picture is something like
these, supposing the diagram not read-only :

Picture Menu : edit drawing settings

see edit drawing settings.

Picture Menu : select all

Select all the items of the current diagram, may also be done through control a

Picture Menu : find selected browser element

To find in the diagram a representation of the elements selected in the browser

349

Picture Menu : optimal scale

similar to the fit scale button, change scale to see all the diagram's elements at great as possible

Picture Menu : optimal window size

change the size of the windows to see all the diagram's elements with the current scale

Picture Menu : copy optimal picture part

Copy all the diagram elements, equivalent to a optimal windows size followed by a copy visible picture part
then a restore of the original windows size

Picture Menu : copy visible picture part

Put the visible part of the current diagram in the clipboard (copy), it is a screen copy, the current scale have
impact on the picture quality.

It is also possible to print all (not only the visible part) the current diagram on printer or a file through the
button

Picture Menu : save optimal picture part

To save all the diagram elements in a file, equivalent to a optimal windows size followed by a save visible
picture part then a restore of the original windows size

Picture Menu : save visible picture part

To save the visible part of the current diagram in a file, it is a screen copy, the current scale have impact on the
picture quality.

Picture Menu : set preferred size and scale

To memorize the current diagram sub window size and the current scale. These ones will be used the next time
the diagram will be opened.

Picture Menu : set preferred scale

To memorize the current scale. These one will be used the next time the diagram will be opened.

Picture Menu : restore preferred size and scale

In case a preferred sub window size and preferred scale was set, follow them.

Picture Menu : unset preferred and scale

To stop to define a preferred size and scale was set

Picture Menu : format

By default the diagram's canvas size is 840 x 1188 points corresponding to an iso A4 format (210*4 x 297*4),
all the predefined available formats are :

iso A5 : 592 x 840

iso A4 : 840 x 1188

iso A3 : 1188 x 1680

iso A2 : 1680 x 2376

iso A1 : 2376 x 3364

iso A0 : 3364 x 4756

USA A : 864 x 1116

USA B : 1116 x 1728

350

USA C : 1728 x 2236

USA D : 2236 x 3456

USA E : 3456 x 4472

USA Letter : 864 x 1116

USA Legal : 864 x 1424

USA Tabloid : 1116 x 1728

Each format also exists in landscape (it is Ledger in case of Tabloid)

The menu entry Custom allows to specify the size, the width and height can be set between 400 and 40000.

Picture Menu : undo changes

Undo all the changes made since the diagram was opened the last time. Note that the diagram is restored
independently of the the project saving. Obviously the deleted browser items was not restored !

Default stereotypes

The dialog allowing to set the default stereotypes has a tab reserved for the diagrams :

Drawing

351

A activity diagram may contain activity, activity regions, activity actions, activity objects, activity control nodes,
packages, fragment, notes, texts, diagram icons, and the flows.

To place these elements in the diagram, use the buttons on the top (to create a new element or choose from the
already defined ones) then click at the appropriate position in the diagram, or grab the element from the
browser into the diagram.

Warning : when you use the buttons to add an activity node and you click on a activity or region drawing, the
new activity will be nested in the activity or region. In case you place the new element out of any activity or
region drawing, the new one will be nested in activity owning the diagram.

To add a new flow or dependency between elements, select the appropriate arrow through the buttons on the
top of the diagram sub window, click on the start element with the left mouse button, move the mouse, each
time the mouse button is raised a new line break is introduced, at least click on the end element. To abort a
line construction press the right mouse button or do a double click with the left mouse button.

A line may be broken, during its construction of after clicking on the line with the left mouse button and
moving the mouse with the mouse button still pushed. To remove a line break, a double click on the point with
the left mouse button is enough, or use the line break menu of the point using the right mouse button.

By default the lines go to the center of their extremities, to decenter a line click near the desired extremity and
move the mouse click down. To come back to a center line, use the menu geometry

The scale may be changed from 30 up to 200 %. To allows to see the operation/message kinds even with a small
scale, the size of the arrows is unmodified.

fit% allows to set the largest scale allowing to show all the picture, as it is possible. Because of the scrollbar
management, hitting several times on fit% may give several scales.

Classically, the left mouse click may be used to select an element, or several when the control key is down, a
multiple selection may also be done defining a region using the mouse left click out of any element and moving
the mouse with the click and maintaining the click down. The diagram's elements may be moved after a left
mouse click on an element and maintaining the click down during the mouse move. The right mouse click is
used to show context dependent menus.

control s is a shortcut to save the project

control shift s is a shortcut to save the project in a new one

352

control p is a shortcut to print the active diagram

control a is a shortcut to select all the diagram's elements

control d is a shortcut to delete the selected element(s), the model is affected

suppr is a shortcut to remove the selected element(s) from the diagram, these elements are not deleted

control c is a shortcut to copy the selected diagram's elements

control x is a shortcut to cut (remove from diagram) the selected diagram's elements

control v is a shortcut to paste the selected diagram's elements

control z and control u are a shortcut of undo

control r and control y are a shortcut of redo

the keyboard arrows allow to move the selected items

You can define your own shortcut using the shortcut editor through the Miscellaneous menu.

The global menu miscellaneous allows you to show / hide a grid in the background of the diagram.

When several diagram's elements are selected, the menu appearing on a left mouse click allows to align or
resize or distribute them :

If all the selected elements has the same kind (for instance all are a activity action), you edit their drawing
settings globally :

353

and for instance when the elements are notes :

The settings valuing <unchanged> are not changed for the selected elements, in the other case the same value
is set for all the elements.

You can also reuse the drawing settings set for the first selected element for the other selected elements.

Fragment

A fragment is resizeable. To change the fragment's name choose the edit entry of its menu or double click on it

A right mouse click on a note show the following menu :

Edit drawing settings allows to change the fill color

Note

A note may contain any text, a note is resizeable. To change the text of a note choose the edit entry of its menu
or double click on it, this open a window containing the text, close the window to end the edition :

A right click on the edited note calls a dialog allowing some text manipulations thanks Qt.

A right mouse click on a note show the following menu :

354

The font may be changed, by default the font is the one used to write the other texts.

The color of the text may be changed, a text is black by default.

Edit drawing settings allows to change the fill color

Select linked items select all the items connected this the current one through any line.

Text

Text is another way to write a text, contrary to the note a text is written alone (see “upper diagram :” on the
picture below), by default a text contains blabla: a text cannot be empty. The edition of a text is done like for a
note. A text is resizeable, a resize is not automatically done when the contains is modified.

A right mouse click on a text show the following menu :

Image

You can directly insert an image independently of the use of stereotype part of a profile, the initial size of the
image is followed when the zoom is 100%. You can resize them, to go back to the initial size of an image just
edit it (for instance through a double mouse clic on it) and confirm. Like for a profile the image can be specified
through an absolute path, or a path relative to the root directory for the icons or relative to the project
directory. In case the path of an icon is not absolute, the icon are searched first using the root directory for the
icons, then using the current directory, then using the project directory.

When you insert an image or edit one the following dialog appears :

A right mouse click on an image show the following menu :

Diagram icon

355

A diagram icon is a shortcut to a diagram, this allows to quickly navigate through the diagram without
limitation (a class or some other item kinds may be associated to only one diagram). The used icon indicates
the diagram kind, but its name is not written.

A double mouse left click on a diagram icon opens the diagram, the open entry of the diagram icon menu does
the same thing.

A right mouse click on a diagram icon show the following menu :

The other diagram's elements have an own chapter, refer to them.

Previous : state diagram

Next : component diagram

356

Component diagram

The component diagrams may be placed in a component view

A component diagram is created through the new component diagram entry of the component view browser
menus.

Browser menu

The node menu appearing with a right mouse click on its representation in the browser is something like these,
supposing the diagram not read-only nor deleted :

Browser Menu : show

show allows to show the diagram picture, and edit it in case it is not read only.

Browser Menu : edit

edit allows to show/modify the diagram properties. In case the diagram is read-only, the fields of the dialog are
also read-only.

component diagram dialog, tab Uml

357

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it. The
stereotype of a diagram doesn't have a special meaning for BOUML

The editor button visible above and associated here to the description, allows to edit the description in an other
window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note that
this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Browser Menu : edit drawing settings

This dialog allows to specify how the items of the diagram must be drawn by default, you may choose default
for each value, in this case the effective value if specified in the upper level (which itself may specify default etc
... up to the project level).

package name in tab : to indicate if the packages's name must be written in the tab which is the small
rectangle on the top :

show package context : to indicate if the context where the packages are defined must be written, it is not
the case just above. The context may be the “UML context” which is the path of the package in the
browser (choice followed for awt below), or the C++ or Php namespace specified by the package, or the
Java package specified by the package (choice followed for picture below) or at least the Idl module :

automatic labels position : To ask BOUML to move or to not move the associated labels on the relations in

358

the diagram when the relation is edited or the linked items moved etc ...

color gradient : by default the elements are colored without gradient, you can ask for to use a diagonal,
vertical or horizontal gradient.

draw component as icon : by default the component drawing follows the UML 2.0 notation, this setting
allows to use the old representation (see customer)

show component's required and provided interfaces: to indicate if the required and provided interfaces of
the component must be written in the drawing of the component as a compartment.

show component's realization : to indicate if the realizations of the component must be written in the
drawing of the component as a compartment.

show stereotype properties : to indicate through a note the (non empty) value of the stereotype properties
in case the element is stereotyped by a stereotype part of a profile. By default the stereotype properties
are hidden.

Browser Menu : duplicate

Clone the diagram in a new one in the same diagram view

Browser Menu : delete

The delete entry is only present when the diagram is not read-only.

Delete the diagram and all its representation in the opened diagrams. After that it is possible to undelete it
(from the browser) until you close the project : obviously the deleted items are not saved !

Menu : mark

See mark

Browser Menu : tools

The menu entry tool is only present in case at least a plug-out may be applied on the diagram. The selected tool
is called and applied on the current diagram.

Picture menu

The diagram menu appearing with a right mouse click out off any item in the diagram picture is something like
these, supposing the diagram not read-only :

359

Picture Menu : add marked elements

Only appears when a elements whose can be added in the diagram are marked in the browser, all these
elements whose are not yet present in the diagram are added in the diagram, allowing to not have to do several
drag & drop from the browser to them, but their position will probably not be the good one

Picture Menu : edit drawing settings

see edit drawing settings.

Picture Menu : select all

Select all the items of the current diagram, may also be done through control a

Picture Menu : find selected browser element

To find in the diagram a representation of the elements selected in the browser

Picture Menu : optimal scale

similar to the fit scale button, change scale to see all the diagram's elements at great as possible

Picture Menu : optimal window size

Similar to the button , change the size of the windows to see all the diagram's elements with the current
scale

Picture Menu : copy optimal picture part

Copy all the diagram elements, equivalent to a optimal windows size followed by a copy visible picture part
then a restore of the original windows size

Picture Menu : copy visible part

Put the visible part of the current diagram in the clipboard (copy), it is a screen copy, the current scale have
impact on the picture quality.

It is also possible to print all (not only the visible part) the current diagram on printer or a file through the
button

Picture Menu : save optimal picture part

To save all the diagram elements in a file, equivalent to a optimal windows size followed by a save visible
picture part then a restore of the original windows size

Picture Menu : save visible picture part

To save the visible part of the current diagram in a file, it is a screen copy, the current scale have impact on the
picture quality.

Picture Menu : set preferred size and scale

To memorize the current diagram sub window size and the current scale. These ones will be used the next time
the diagram will be opened.

Picture Menu : set preferred scale

To memorize the current scale. These one will be used the next time the diagram will be opened.

Picture Menu : restore preferred size and scale

In case a preferred sub window size and preferred scale was set, follow them.

Picture Menu : unset preferred and scale

To stop to define a preferred size and scale was set

360

Picture Menu : format

By default the diagram's canvas size is 840 x 1188 points corresponding to an iso A4 format (210*4 x 297*4),
all the predefined available formats are :

iso A5 : 592 x 840

iso A4 : 840 x 1188

iso A3 : 1188 x 1680

iso A2 : 1680 x 2376

iso A1 : 2376 x 3364

iso A0 : 3364 x 4756

USA A : 864 x 1116

USA B : 1116 x 1728

USA C : 1728 x 2236

USA D : 2236 x 3456

USA E : 3456 x 4472

USA Letter : 864 x 1116

USA Legal : 864 x 1424

USA Tabloid : 1116 x 1728

Each format also exists in landscape (it is Ledger in case of Tabloid)

The menu entry Custom allows to specify the size, the width and height can be set between 400 and 40000.

Picture Menu : undo changes

Undo all the changes made since the diagram was opened the last time. Note that the diagram is restored
independently of the the project saving. Obviously the deleted browser items was not restored !

Default stereotypes

The dialog allowing to set the default stereotypes has a tab reserved for the diagrams :

361

Drawing

A component diagram may contain component, package, fragment, notes, texts, diagram icons and the
relations.

Note that the association between components does not appears in the browser, there are establish/deleted
throw the component diagrams or when you edit the component from where the relation start.

To place these elements in the diagram, use the buttons on the top (to create a new element or choose from the
already defined ones) then click at the appropriate position in the diagram, or grab the element from the
browser into the diagram.

To show a required or provided interface indications, use the appropriate button, click on the component, move
the mouse click down and release the click on an already placed or or nowhere, in this least case BOUML
will ask you to select a class from the list set by editing the component (OrderEntry and Account are available
for the component Store because Customer and Order are nested in Store).

The scale may be changed from 30 up to 200 %. To allows to see the relation kinds even with a small scale, the
size of the arrows is unmodified.

fit% allows to set the largest scale allowing to show all the picture, as it is possible. Because of the scrollbar
management, hitting several times on fit% may give several scales.

Classically, the left mouse click may be used to select an element, or several when the control key is down, a
multiple selection may also be done defining a region using the mouse left click out of any element and moving

362

the mouse with the click and maintaining the click down. The diagram's elements may be moved after a left
mouse click on an element and maintaining the click down during the mouse move. The right mouse click is
used to show context dependent menus.

control s is a shortcut to save the project

control shift s is a shortcut to save the project in a new one

control p is a shortcut to print the active diagram

control a is a shortcut to select all the diagram's elements

control d is a shortcut to delete the selected element(s), the model is affected

suppr is a shortcut to remove the selected element(s) from the diagram, these elements are not deleted

control c is a shortcut to copy the selected diagram's elements

control x is a shortcut to cut (remove from diagram) the selected diagram's elements

control v is a shortcut to paste the selected diagram's elements

control z and control u are a shortcut of undo

control r and control y are a shortcut of redo

the keyboard arrows allow to move the selected items

You can define your own shortcut using the shortcut editor through the Miscellaneous menu.

The global menu miscellaneous allows you to show / hide a grid in the background of the diagram.

When several diagram's elements are selected, the menu appearing on a left mouse click allows to align or
resize or distribute them :

363

If all the selected elements has the same kind (for instance all are a class), you edit their drawing settings
globally :

and for instance when the elements are notes :

The settings valuing <unchanged> are not changed for the selected elements, in the other case the same value
is set for all the elements.

You can also reuse the drawing settings set for the first selected element for the other selected elements.

Fragment

A fragment is resizeable. To change the fragment's name choose the edit entry of its menu or double click on it

A right mouse click on a note show the following menu :

Edit drawing settings allows to change the fill color

Note

A note may contain any text, a note is resizeable. To change the text of a note choose the edit entry of its menu
or double click on it, this open a window containing the text, close the window to end the edition :

364

A right click on the edited note calls a dialog allowing some text manipulations thanks Qt.

A right mouse click on a note show the following menu :

The font may be changed, by default the font is the one used to write the other texts.

The color of the text may be changed, a text is black by default.

Edit drawing settings allows to change the fill color

Select linked items select all the items connected this the current one through any line.

Text

Text is another way to write a text, contrary to the note a text is written alone (see “upper diagram :” on the
picture below), by default a text contains blabla: a text cannot be empty. The edition of a text is done like for a
note. A text is resizeable, a resize is not automatically done when the contains is modified.

A right mouse click on a text show the following menu :

Image

You can directly insert an image independently of the use of stereotype part of a profile, the size of the image is
followed when the zoom is 100%. You can resize them, to go back to the initial size of an image just edit it (for
instance through a double mouse clic on it) and confirm. Like for a profile the image can be specified through
an absolute path, or a path relative to the root directory for the icons or relative to the project directory. In
case the path of an icon is not absolute, the icon are searched first using the root directory for the icons, then
using the current directory, then using the project directory.

When you insert an image or edit one the following dialog appears :

365

A right mouse click on an image show the following menu :

Diagram icon

A diagram icon is a shortcut to a diagram, this allows to quickly navigate through the diagram without
limitation (a class or some other item kinds may be associated to only one diagram). The used icon indicates
the diagram kind, but its name is not written.

A double mouse left click on a diagram icon opens the diagram, the open entry of the diagram icon menu does
the same thing.

A right mouse click on a diagram icon show the following menu :

The other diagram's elements have an own chapter, refer to them.

Previous : class diagram

Next : deployment diagram

366

ordistrDeployment diagram

The deployment diagrams may be placed in a deployment view

A deployment diagram is created through the new deployment diagram entry of the deployment view browser
menus.

Browser menu

The node menu appearing with a right mouse click on its representation in the browser is something like these,
supposing the diagram not read-only nor deleted :

Browser Menu : show

367

show allows to show the diagram picture, and edit it in case it is not read only.

Browser Menu : edit

edit allows to show/modify the diagram properties. In case the diagram is read-only, the fields of the dialog are
also read-only.

deployment diagram dialog, tab Uml

The proposed stereotypes are the default one specified through the Default stereotypes dialog more the
current one (empty here). It is possible to choose into the list or to give a new one, or to empty it. The
stereotype of a diagram doesn't have a special meaning for BOUML

The editor button visible above and associated here to the description, allows to edit the description in an other
window, or to call an external editor (for instance Xcoral) specified through the environment dialog. Note that
this external editor have to create an own window, its parameter is the pathname of the file containing the
description, its execution is done in parallel with BOUML which looks each second at the file contents to get
the new definition until the dialog is closed (I do not like very much this polling but this works even QT isn't
compiled with the thread support).

Browser Menu : edit drawing settings

This dialog allows to specify how the items of the diagram must be drawn by default, you may choose default
for each value, in this case the effective value if specified in the upper level (which itself may specify default etc
... up to the project level).

package name in tab : to indicate if the package's name must be written in the tab which is the small
rectangle on the top (note : a transparent package doesn't have shadow) :

show packages context : to indicate if the context where the package is defined must be written, it is not

368

the case just above. The context may be the “UML context” which is the path of the package in the
browser (choice followed for awt below), or the C++ / Php namespace specified by the package, or the
Java package specified by the package (choice followed for picture below) or at least the Idl module :

write node instance horizontally : Allows to write the the node type and the instance name on the same
line (see host below) or on two lines (see laserwriter below).

automatic labels position : To ask BOUML to move or to not move the associated labels on the relations in
the diagram when the relation is edited or the linked items moved etc ...

color gradient : by default the elements are colored without gradient, you can ask for to use a diagonal,
vertical or horizontal gradient.

show stereotype properties : to indicate through a note the (non empty) value of the stereotype properties
in case the element is stereotyped by a stereotype part of a profile. By default the stereotype properties
are hidden.

Browser Menu : duplicate

Clone the diagram in a new one in the same deployment view.

Browser Menu : delete

The delete entry is only present when the diagram is not read-only.

Delete the diagram and all its representation in the opened diagrams. After that it is possible to undelete it
(from the browser) until you close the project : obviously the deleted items are not saved !

Menu : mark

See mark

Browser Menu : tools

The menu entry tool is only present in case at least a plug-out may be applied on the diagram. The selected tool
is called and applied on the current diagram.

Picture menu

The diagram menu appearing with a right mouse click out off any item in the diagram picture is something like
these, supposing the diagram not read-only :

369

Picture Menu : add marked elements

Only appears when a elements whose can be added in the diagram are marked in the browser, all these
elements whose are not yet present in the diagram are added in the diagram, allowing to not have to do several
drag & drop from the browser to them, but their position will probably not be the good one

Picture Menu : edit drawing settings

see edit drawing settings.

Picture Menu : select all

Select all the items of the current diagram, may also be done through control a

Picture Menu : find selected browser element

To find in the diagram a representation of the elements selected in the browser

Picture Menu : optimal scale

similar to the fit scale button, change scale to see all the diagram's elements at great as possible

Picture Menu : optimal window size

Similar to the button , change the size of the windows to see all the diagram's elements with the current
scale

Picture Menu : copy optimal picture part

Copy all the diagram elements, equivalent to a optimal windows size followed by a copy visible picture part
then a restore of the original windows size

Picture Menu : copy visible part

Put the visible part of the current diagram in the clipboard (copy), it is a screen copy, the current scale have
impact on the picture quality.

It is also possible to print all (not only the visible part) the current diagram on printer or a file through the
button

Picture Menu : save optimal picture part

370

To save all the diagram elements in a file, equivalent to a optimal windows size followed by a save visible
picture part then a restore of the original windows size

Picture Menu : save visible picture part

To save the visible part of the current diagram in a file, it is a screen copy, the current scale have impact on the
picture quality.

Picture Menu : set preferred size and scale

To memorize the current diagram sub window size and the current scale. These ones will be used the next time
the diagram will be opened.

Picture Menu : set preferred scale

To memorize the current scale. These one will be used the next time the diagram will be opened.

Picture Menu : restore preferred size and scale

In case a preferred sub window size and preferred scale was set, follow them.

Picture Menu : unset preferred and scale

To stop to define a preferred size and scale was set

Picture Menu : format

By default the diagram's canvas size is 840 x 1188 points corresponding to an iso A4 format (210*4 x 297*4),
all the predefined available formats are :

iso A5 : 592 x 840

iso A4 : 840 x 1188

iso A3 : 1188 x 1680

iso A2 : 1680 x 2376

iso A1 : 2376 x 3364

iso A0 : 3364 x 4756

USA A : 864 x 1116

USA B : 1116 x 1728

USA C : 1728 x 2236

USA D : 2236 x 3456

USA E : 3456 x 4472

USA Letter : 864 x 1116

USA Legal : 864 x 1424

USA Tabloid : 1116 x 1728

Each format also exists in landscape (it is Ledger in case of Tabloid)

The menu entry Custom allows to specify the size, the width and height can be set between 400 and 40000.

Picture Menu : undo changes

Undo all the changes made since the diagram was opened the last time. Note that the diagram is restored
independently of the the project saving. Obviously the deleted browser items was not restored !

371

Network Menu

The menu appearing with a right mouse click on a network line is something like these, supposing the diagram
not read-only :

Network Menu : edit

edit allows to edit the network :

Network Menu : select stereotype and label

To select the network label and stereotype. Useful when you are lost after many label movings.

Artifact association Menu

The menu appearing with a right mouse click on an association between artifacts is something like these,
supposing the diagram not read-only :

Association Menu : edit

edit allows to edit the association :

Association Menu : select stereotype and label

To select the association's label and stereotype. Useful when you are lost after many label movings. Only
appears when the association have a stereotype or a label or both.

Association Menu : default stereotype and label position

To place the association's label and stereotype in the default position. Only appears when the association have
a stereotype or a label or both.. Useful when you are lost after many label movings.

372

By default when you move a class or a relation point break or edit the relation, the associated labels are moved
to their default position, this may be irritating. To ask BOUML to not move them automatically in a diagram,
use the drawing settings of the diagrams.

Association Menu : delete from model

Remove the association.

Default stereotypes

The dialog allowing to set the default stereotypes has a tab reserved for the diagrams :

Drawing

373

A deployment diagram may contain deployment node, network line, network connexion, component, fragment,
notes, texts, diagram icons and the relations.

To place these elements in the diagram, use the buttons on the top (to create a new element or choose from the
already defined ones) then click at the appropriate position in the diagram, or grab the element from the
browser into the diagram.

The network lines may connect deployment nodes and/or network connexion. The network connexions
(represented by small squares) allows to have network lines out of deployment node as it is the case in the
picture above.

The scale may be changed from 30 up to 200 %. To allows to see the relation kinds even with a small scale, the
size of the arrows is unmodified.

fit% allows to set the largest scale allowing to show all the picture, as it is possible. Because of the scrollbar
management, hitting several times on fit% may give several scales.

Classically, the left mouse click may be used to select an element, or several when the control key is down, a
multiple selection may also be done defining a region using the mouse left click out of any element and moving
the mouse with the click and maintaining the click down. The diagram's elements may be moved after a left
mouse click on an element and maintaining the click down during the mouse move. The right mouse click is
used to show context dependent menus.

control s is a shortcut to save the project

control shift s is a shortcut to save the project in a new one

control p is a shortcut to print the active diagram

control a is a shortcut to select all the diagram's elements

control d is a shortcut to delete the selected element(s), the model is affected

suppr is a shortcut to remove the selected element(s) from the diagram, these elements are not deleted

control c is a shortcut to copy the selected diagram's elements

control x is a shortcut to cut (remove from diagram) the selected diagram's elements

control v is a shortcut to paste the selected diagram's elements

control z and control u are a shortcut of undo

control r and control y are a shortcut of redo

the keyboard arrows allow to move the selected items

You can define your own shortcut using the shortcut editor through the Miscellaneous menu.

374

The global menu miscellaneous allows you to show / hide a grid in the background of the diagram.

When several diagram's elements are selected, the menu appearing on a left mouse click allows to align or
resize or distribute them :

If all the selected elements has the same kind (for instance all are a class), you edit their drawing settings
globally :

and for instance when the elements are notes :

The settings valuing <unchanged> are not changed for the selected elements, in the other case the same value
is set for all the elements.

375

You can also reuse the drawing settings set for the first selected element for the other selected elements.

Fragment

A fragment is resizeable. To change the fragment's name choose the edit entry of its menu or double click on it

A right mouse click on a note show the following menu :

Edit drawing settings allows to change the fill color

Note

A note may contain any text, a note is resizeable. To change the text of a note choose the edit entry of its menu
or double click on it, this open a window containing the text, close the window to end the edition :

A right click on the edited note calls a dialog allowing some text manipulations thanks Qt.

A right mouse click on a note show the following menu :

The font may be changed, by default the font is the one used to write the other texts.

The color of the text may be changed, a text is black by default.

Edit drawing settings allows to change the fill color

Select linked items select all the items connected this the current one through any line.

Text

Text is another way to write a text, contrary to the note a text is written alone (see “upper diagram :” on the
picture below), by default a text contains blabla: a text cannot be empty. The edition of a text is done like for a
note. A text is resizeable, a resize is not automatically done when the contains is modified.

A right mouse click on a text show the following menu :

376

Image

You can directly insert an image independently of the use of stereotype part of a profile, the size of the image is
followed when the zoom is 100%. You can resize them, to go back to the initial size of an image just edit it (for
instance through a double mouse clic on it) and confirm. Like for a profile the image can be specified through
an absolute path, or a path relative to the root directory for the icons or relative to the project directory. In
case the path of an icon is not absolute, the icon are searched first using the root directory for the icons, then
using the current directory, then using the project directory.

When you insert an image or edit one the following dialog appears :

A right mouse click on an image show the following menu :

Diagram icon

A diagram icon is a shortcut to a diagram, this allows to quickly navigate through the diagram without
limitation (a class or some other item kinds may be associated to only one diagram). The used icon indicates
the diagram kind, but its name is not written.

A double mouse left click on a diagram icon opens the diagram, the open entry of the diagram icon menu does
the same thing.

A right mouse click on a diagram icon show the following menu :

The other diagram's elements have an own chapter, refer to them.

Previous : component diagram

Next : profile

377

378

Profiles
A profile is supported by a package stereotyped profile, the main goal is to define stereotypes, themselves
supported by classes stereotyped stereotype. A Stereotype has attributes producing properties on the element
having this stereotype. Plug-outs can be associated to a stereotype to automatically call them when an element
receive the stereotype or when the element was edited (the plug-outs are not called when the modifications are
made through a plug-out). A profile can define standard classes, probably enumerations to type the
stereotype's attributes.

When you stereotype an element you can choose to use a stereotype defined in a profile, or a non modeled
stereotype (pure text).

When the set stereotype is defined in a profile, the associated properties (may be inherited) are automatically
added to the element with the specified default value (may be empty), then the plug-out optionally associated
to the setting of the stereotype is applied to the element receiving the stereotype. This is done after validating
the new stereotype by validating the element edition through its dedicated dialog, so, if you want to modify the
element's properties associated to its stereotype you have to edit the elements two times : one to set the
stereotype, the second to set the properties to the desired values. Nothing is done when the stereotype is set
through a plug-out.

When you unset or change the stereotype and it was a stereotype defined in a profile, the associated properties
(may be inherited) are automatically removed. Nothing is done when the stereotype is modified through a plug-
out.

By default the values of the stereotype properties for a stereotyped element are not shown in the diagrams, to
show them through notes set the drawing setting show stereotype properties

A stereotypes defined in profile can be projected in stereotype known by a code generator by defining the
projection through the generation settings, like for textual stereotypes.

Contrarily to some other modelers, you can modify profiles and stereotypes even when there are applied to
elements, and stereotypes part of a profile are applicable immediately in the model where there are defined
without asking for that explicitly.

Profile

A package-profile has some restrictions regarding to the standard packages :

the menus doesn't propose to add sub deployment view nor component view

the dialog doesn't give access to the C++, Java, Idl nor python tabs

the dialog doesn't propose to generate / reverse / roundtrip

To create a new profile, use the package menu entry New profile and enter its name or cancel its creation.
Obviously you can also add profiles in a project by importing a project definition profiles, and you can also add
a package then change its stereotype to profile.

When you edit a package-profile the dedicated tab profile is enabled :

379

When the stereotype of the package is profile, the tab Profile allows to set the meta model reference (by default
http://schema.omg.org/spec/UML/2.1/uml.xml, specifies the value of the href produced in the XMI through an
imported package) and meta class reference (specifies the value of the href produced in the XMI through an
imported element). For a plug-out there are supported by the properties metamodelReference and
metaclassreference.

When you delete a profile, Bouml asks for to propagate or not the deletion. If the propagation is done all the its
stereotypes are also deleted and the corresponding properties removed from the stereotyped elements.

When a profile is defined in an other project and you re-import it to upgrade its use : delete the profile asking
for to not propagate the deletion, then imports the new definition. In case used profiles are coming from
several other projects, process step by step, before importing a given project defining a group of stereotypes
delete these profiles and only them, then import the project. In case profiles are placed under a package
grouping them, delete the profiles directly, don't delete them by deleting the container package because Bouml
doesn't ask for to not propagate the deletion when the profiles are deleted indirectly.

Stereotype

A class-stereotype has some restrictions regarding to the standard classes:

it doesn't have an associated artifact

it doesn't have projection in the languages (C++, Java ...)

the menu doesn't propose to add a sub-class

the dialog doesn't propose to generate / reverse / roundtrip

the unidirectional associations from the class to meta classes (classes stereotyped metaclass) are drawn as
extensions and indicate the extended meta classes. The explicit multiplicity 1 indicates the extension is
required :

the attributes support the attribute of the properties. For the element receiving the stereotype, each
property's name is the name of the profile followed by ':' followed by the name of the stereotype followed
by a ':' followed by the name of the stereotype attribute. The type of an attribute is considered to be a
string in case it is not an enumeration (a class stereotyped enum).

a class-stereotype can generalize or realize other class-stereotypes and inherits attributes

Bouml doesn't manage OCL, so the constraints aren't checked, however you can attach plug-outs to a class-
stereotype, refer to the corresponding dialogs described below.

To create a stereotype in a profile, choose the menu entry New stereotype proposed by the menu of a class
view part of a package-profile.

When you edit a class-stereotype the dedicated tab stereotype is enabled :

380

The tab Stereotype allows to set who is extended, the elements on which the stereotype applies, and to set
dedicated plug-outs :

initialization plug-out : indicate the plug-out to be applied after the edition of an element setting its
stereotype to the current stereotype. When the plug-out is applied the stereotype's attributes was already
added to the element and initialized with their default values. It is your responsibility to call the
corresponding plug-out for the inherited stereotypes. Obviously to set this plug-out is optional.

check plug-out : indicates the plug-out to be applied after the edition of an element which stereotype is
unchanged. It is your responsibility to call the corresponding plug-out for the inherited stereotypes. This
plug-out is also called when a children in the browser tree is edited. Obviously to set this plug-out is
optional.

parameters : to give parameters to the plug-out allowing to limit the number of plug-outs, and for instance
to define only one plug-out for a profile and to use these parameters to to indicate the stereotype and if
this is an initialization or a check.

icon path : to specify an icon, several kind of image can be used depending on the QT release (png, gif,
jpeg, xpm ...). If specified this icon will be always used in the browser for the elements having this
stereotype except when there are deleted, the image is resized to have its width and weight less or equal
to 16. In a diagram the image is used without modification when the scale is 100%, else it is resized. This
image is used in the diagrams for classes when the drawing mode is natural, components when you ask for
to use an icon, packages (context not written), state actions (behavior not written), activity object nodes,
deployment nodes and artifacts. You are able to specify an absolute path, or a path relative to the root
directory for the icons or relative to the project directory. In case the path of an icon is not absolute, the
icon are searched first using the root directory for the icons, then using the current directory, then using
the project directory.

apply on : to set the types of element on which the stereotype can be applied, to filter the stereotypes and
to not propose all the stereotypes part of profiles on any element. Note this field is set independently of
who is extended, the consistency is not checked.

Note : these plug-outs aren't called when the modifications are made by an other plug-out.

The extension is supported by an implicit attribute whose name is prefixed by base_, for instance base_Element
when the stereotype extends http://schema.omg.org/spec/UML/2.1/uml.xml#Element

For a plug-out the list of elements on which the stereotype applies is supported by the property
stereotypeApplyOn and the attached plug-outs are supported by the properties stereotypeSet and
stereotypeCheck and their parameters by stereotypeSetParameters and stereotypeCheckParameters. The icon
path is attached to the property stereotypeIconPath.

If the stereotype MyStereotype is defined in the profile MyProfile, an element stereotyped by MyStereotype has
in fact the stereotype MyProfile:MyStereotype, and this couple of name must be unique without considering the

381

case of the characters. You have to use the full stereotype name in the generation setting if you to project it in
the target languages.

When you delete a profile (may be by changing its stereotype to not be profile), all its stereotypes are of course
also deleted (except if the deletion is not propagated). When you rename a profile, the stereotypes of the
elements are updated. When you move a class view out of a profile, the own stereotypes are first deleted and
may be re-created after if the new package is a profile, the stereotyped elements are updated.

When you delete a stereotype (perhaps changing its stereotype to not be stereotype or moving its container
class view), the stereotype and the associated properties are removed on the elements having this stereotype,
the elements having a stereotype inheriting the deleted stereotype are also updated to remove the associated
properties. When you rename a stereotype, the properties of the elements having its stereotype or having a
stereotype inheriting it are also renamed. When you undelete a stereotype the consistency of the information
related to the stereotypes is forced. Nothing is done when the stereotype is deleted through a plug-out except
if this one calls UmlBasePackage::updateProfiles().

When you modify the inheritance between stereotypes, the properties of the elements are added/removed.
When you undelete an inheritance between stereotypes the consistency of the information related to the
stereotypes is forced. Nothing is done when the inheritance is modified through a plug-out except if this one
calls UmlBasePackage::updateProfiles().

When you add/delete a stereotype attribute, the corresponding property of the elements are added/removed.
When you undelete a stereotype attribute the consistency of the information related to the stereotypes is
forced. Nothing is done when the modifications is done through a plug-out except if this one calls
UmlBasePackage::updateProfiles().

When you load a model the consistency of the information related to the stereotypes is forced, adding or
removing properties on the stereotyped elements. You can also ask for that phase, this is useful when you
delete profiles without propagation and you want later to propagate the deletions, or when the modifications
was made through a plug-out. You can also ask for to apply the plug-out dedicated to check the stereotyped
elements.

Meta classes

A meta class is a class stereotyped metaclass

The path of a meta class (by default http://schema.omg.org/spec/UML/2.0/uml.xml or http://schema.omg.org
/spec/UML/2.1/uml.xml depending on the XMI generation) is memorized through the property (tagged value)
metaclassPath.

Previous : Deployment diagram

Next : C++ generator

382

C++ Generator
The C++ code generator is a plug-out directly written in C++ (the C++ code generator does not generate
itself !).

The generated sources follows the definition made in BOUML at the artifact / class / operation / relation /
attribute / extra member levels.

When the code generation is applied on a artifact associated to several classes, the code generation is made for
all these classes. Nevertheless the C++ code generator produce first the code in memory and update the
appropriate files only when it is necessary, to not change the last write date of the files for nothing. Depending
on the toggle verbose code generation of the global menu Languages the code generator is verbose or not.

The C++ code generator plug-out may be called on :

a class : in this case the code generation is in fact applied on the class's artifact, then on all the classes
associated to this artifact

a artifact : in this case the code generation is in fact applied on all the classes associated to the artifact

a class view : the code generation will be applied on all the sub classes, then on all the artifacts associated
to these classes

a deployment view : the code generation is applied on all the sub artifacts

a package (may be the project itself) : the code generation will be applied on all the sub class views and
deployment views, then on all their sub classes and artifacts.

When the C++ code generator is ask through the Tools menu, it is applied on the project, then on all the
artifacts.

The name of the generated files depend on the artifact name, the extension depend on the language and is
fixed for each by the generations settings (see below), the directory where the files are generated may be set in
each package containing directly or indirectly the artifact (see generation directory).

artifact

The C++ definition of a artifact is set through the C++ header and C++ source tabs of the artifact dialog.

The code generation depend on the stereotype of the artifact :

text : the C++ definition of the artifact is produced without changes, the name of the generated file is the
name of the artifact, including the extension.

source : see below.

else nothing is generated for the artifact.

artifact header C++

The generated file name is the artifact's name with the extension specified in the first C++ tab of the
generations settings :

383

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
C++ code generator are :

${NAME} produce the artifact name capitalized, ${Name} produce the artifact name with the first letter
capitalized, ${nAME} produce the artifact name forced in lowercase, at least ${name} produce the
artifact name without modification.

${comment} is replaced by the artifact description adding //

${description} is replaced by the artifact description without adding //

${includes} is replaced by the automatically generated #include and using forms, it is also a good place
to add your #include and using forms, when the ones produced by the code generator are not sufficient.
To limit the included files number and to not produce circular #include, the C++ code generator does not
produce an #include to define a type only used by pointer (*) or reference (&) or place between <> in a
template form. The C++ code generator does not look at in the operations body, only the operation's
profiles, relations and attributes, classes inheritances etc ... are used to compute the needed #include list.
You can also use dependencies between classes to add #include, and to choose to place them in the
header of the source file editing the dependency tab C++. ${includes} and ${all_includes} are exclusive.

Note : the generation settings allows to choose between four ways to produce #include :

without path : ask for the C++ code generator to generate the #include without relative or absolute path

with absolute path : ask for the C++ code generator to generate the absolute path of the automatically
included files.

with relative path : ask for the C++ code generator to generate the relative path of the automatically
included files, relative to the file containing the #include

with root relative path : ask for the C++ code generator to generate the relative path of the automatically
included files, relative to the directory specified by the generation settings

${all_includes} is replaced by all the automatically generated #include and using forms, it is also a good
place to add your #include and using forms, when the ones produced by the code generator are not
sufficient. In this case the code generator doesn't produce declarations in the header file nor #include in
the source file, except the ones added by you. ${all_includes} and ${includes} are exclusive.

${declarations} is replaced by the class declarations when the #include form is not produced, it is also a
good place to add your declarations, when the ones produced by the code generator are not sufficient.
Produce nothing if ${all_includes} is used.

384

${namespace} is replaced by the name of the current namespace (an empty string out of a namespace),
dependent on the namespace specifications associated to the package containing the deployment view
where the artifact is defined. ${NAMESPACE} does the same but focing characters in upper case.

${namespace_start} is replaced by the namespace xx { forms, dependent on the namespace
specifications associated to the package containing the deployment view where the artifact is defined.

${definition} is replaced by the definition of the classes and extra artifact definitions associated to the
artifact.

${namespace_end} is replaced by the } forms, dependent on the namespace specifications associated to
the package containing the deployment view where the artifact is defined.

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the artifact, if not found for the deployment view containing the artifact, if not found in
the package containing the deployment view etc ...

When inline force include in header is set the types referenced in the profile of the inline operations produce
includes in the header, else the code generator doesn't take care if there are inline operations to compute
dependencies

artifact source C++

The generated file name is the artifact's name with the extension specified in the first C++ tab of the
generations settings.

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
C++ code generator are :

${NAME} produce the artifact name capitalized, ${Name} produce the artifact name with the first letter
capitalized, ${nAME} produce the artifact name forced in lowercase, at least ${name} produce the
artifact name without modification.

${comment} is replaced by the description of the artifact adding //

${description} is replaced by the artifact description without adding //

${includes} if ${all_includes} is not used in the header definition, it is replaced by the automatically
generated #include and using forms, corresponding to the declaration generated in the header file. If
${all_includes} is used in the header definition, it is replaced by the #include of the header. It is also a
good place to add your #include and using forms.

${namespace} is replaced by the name of the current namespace (an empty string out of a namespace),
dependent on the namespace specifications associated to the package containing the deployment view
where the artifact is defined. ${NAMESPACE} does the same but focing characters in upper case.

${namespace_start} is replaced by the namespace xx { forms, dependent on the namespace
specifications associated to the package containing the deployment view where the artifact is defined.

${members} is replaced by the non inline members of the classes and extra artifact definitions
associated to the artifact.

${namespace_end} is replaced by the } forms, dependent on the namespace specifications associated to
the package containing the deployment view where the artifact is defined.

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the artifact, if not found for the deployment view containing the artifact, if not found in
the package containing the deployment view etc ...

Class

The C++ definition of a class is set through the Uml, Parametrized, Instantiate and C++ tabs of the class
dialog.

A C++ type definition may be a class, a struct, an union, an enum, a class enum, a template or a template
typedef, depending on the stereotype and its translation in C++ (see generation settings).

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
C++ code generator are :

385

${comment} is replaced by the description of the class adding //

${description} is replaced by the class description without adding //

${template} produce a template declaration in case the class is a template class

${name} is replaced by the class's name

${inherit} is replaced by the class inheritance, with the special case associated to the template typedefs

${members} is replaced by the code generated for all the class's members (relations, attributes,
operations and extra members) following the browser order.

${items} only for the enums, is replaced by the enum's items

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the class, if not found for the container of the class (an other class of a class view) etc ...

In the special case where the class is declared external, its C++ type declaration must contains at least one
line indicating how the name of the class is generated, the other lines will be added in the header file of the
components referencing the class. By default the first line only contain ${name} meaning that the name is
produced unchanged, the only allowed keywords are ${name}, ${Name} and ${NAME}. For instance you
want to define the external class string and you want to automatically generate #include <string> followed by
using namespace std; you just have to create the class string, to set it external in C++ and to have the
declaration form :

${name}

#include <string>

using namespace std;

If you don't want to use the namespace and ask to write std::string the declaration must be :

std::${name}

#include <string>

Operation

The C++ definition of an operation is set through the Uml and C++ tabs of the operation dialog.

The indentation of the first line of the declaration/definition give the indentation added to the visibility
specification in the class definition for all the operation declaration/definition (except for the pre-processor
forms beginning by # whose are placed at the beginning of the line).

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
C++ code generator are :

${comment} is replaced by the description of the operation adding //

${description} is replaced by the operation description without adding //

${static} produce static when the operation is a class operation (see the UML tab)

${const} produce const when the operation is const

${volatile} produce volatile when the operation is volatile

${friend} produce friend when the operation is friend

${virtual} produce virtual when the oprration is virtual

${inline} produce inline when the operation is inline

${type} is replaced by the returned value type (see the UML tab)

${multiplicity} is replaced by the multiplicity of the return type (see the UML tab), a priori used in a
comment

${name} is replaced by the operation's name

386

${class} is replaced by the name of the class containing the operation.

${(} and ${)} produce (and), but there are also a mark for BOUML to find the parameters list

${abstract} produce the string = 0 when the operation is abstract (see the UML tab)

${staticnl} produce a line break when the operation is static, else an empty string.

${t<n>}, ${p<n>} and ${v<n>} produce the type, name and default value of each parameter (count
from 0), this allows you to remove a parameter, add type modifiers etc ...

${m<n>} produce the multiplicity of each parameter (count from 0), a priori used in a comment

${throw} is replaced by the form throw (...) when at least an exception is defined in the UML tab. It is
also possible to produce throw() when there is no exception depending on the generation settings.

${body} is replaced by the body of the operation, this macro may also be replaced by the body itself
(BOUML use this way for the get and set operations associated to a relation/attribute). The usage of
${body} has a great advantage : when you hit Default definition or From declaration the body is not
cleared ! At least BOUML share the declaration and definition forms of the operations (and other objects)
to minimize the needed memory size, ${body} help for this ! The indentation of the keyword ${body} is
added at the beginning of each line except the ones starting by a '#' or when the previous one ends by '\'.

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the operation, if not found for the class containing the operation etc ...

A template operation is defined with an empty declaration (allowing Bouml to detect this case) and
placing the actuals between ${class} and :: in the declaration part.

If the toggle preserve operations's body is set through the Languages menu, the generators do not modify the
body of the operations protected by dedicated delimiters. This means that for them the body definition set
through BOUML is not used. The first time you generate the code with the toggle set, because the delimiters
are not yet present in the generated code, the operation's body will be updated depending on their definition
under BOUML. After, while the toggle is set and the delimiters present, the bodies will not change, allowing
you to modify them out of BOUML.

Notes :

In case the file containing a body definition is not consistent with the artifact under BOUML, the body will
be regenerated by the code generation, using its definition under the model. Of course an operations
becoming inline or stopping to be inline is not a problem.

When you import a project, the body of the imported operations must be the right one in the imported
model. The preserved bodies of the imported operations will not be find because the identifier of an
operation used to mark its body changes during the import.

The bodies under the model are not updated by the code generation, use roundtrip body for that

Only the operations using the keyword ${body} may have a preserved body.

The only modification you can do in the lines containing the delimiters is the indent.

The toggle is saved in the file associated to the project, be sure the save is done when you change this
toggle !

Attribute

The C++ definition of an attribute is set through the Uml and C++ tabs of the attribute dialog.

The indentation of the first line of the definition give the indentation added to the visibility specification in the
class definition for all the attribute definition (except for the pre-processor commands beginning by # whose
are placed at the beginning of the line).

An attribute may be a standard attribute or the item of an enumeration.

standard attribute

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
C++ code generator are :

387

${comment} is replaced by the description of the attribute adding //

${description} is replaced by the attribute description without adding //

${static} produce static when the attribute is a class attribute (see the UML tab)

${mutable} produce mutable when the attribute is mutable

${volatile} produce volatile when the attribute is volatile

${thread_local} produce an empty string when the check box thread_local is not checked, else produce
thread_local

${const} produce const when the attribute is const (see the UML tab) or constexpr when the check box
constexpr is checked in the C++ tab

${type} is replaced by the type of the attribute (see the UML tab)

${stereotype} is replaced by the translation in C++ of the relation's stereotype (see the UML tab)

${multiplicity} is replaced by the multiplicity of the relation (see the UML tab), must be used in case the
multiplicity is a vector or array dimensioning ([and] are added when they are not present).

${name} is replaced by the attribute's name (see the UML tab)

${value} is replaced by the initial value of the static attribute in the definition part generated in the
source file (see the UML tab), ${value} and ${h_value} are exclusive

${h_value} is replaced by the initial value of the static attribute in the declaration part generated in the
header file (see the UML tab), ${value} and ${h_value} are exclusive

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the attribute, if not found for the class containing the attribute etc ...

enumeration item

The macros known by the C++ code generator are :

${comment} is replaced by the description of the item adding //

${description} is replaced by the item description without adding //

${name} is replaced by the item's name (see the UML tab)

${value} is replaced by the value of the item (see the UML tab)

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the attribute, if not found for the class containing the attribute etc ...

Relation

The C++ definition of a relation is set through the Uml and C++ tabs of the relation dialog.

The indentation of the first line of the definition give the indentation added to the visibility specification in the
class definition for all the relation definition (except for the pre-processor commands beginning by # whose are
placed at the beginning of the line).

Relation equivalent to an attribute

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
C++ code generator are :

${comment} is replaced by the description of the relation adding //

${description} is replaced by the relation description without adding //

${static} produce static when the relation is a class relation (see the UML tab)

${const} produce const when the relation is read-only (see the UML tab) or constexpr when the check
box constexpr is checked in the C++ tab

388

${type} is replaced by the class pointed by the relation (see the UML tab)

${name} is replaced by the relation's role name (see the UML tab)

${inverse_name} is replaced by the name of the inverse role (see the UML tab)

${value} is replaced by the initial value of the static relation in the definition part generated in the source
file (see the UML tab), ${value} and ${h_value} are exclusive

${h_value} is replaced by the initial value of the static relation in the declaration part generated in the
header file (see the UML tab), ${value} and ${h_value} are exclusive

${thread_local} produce an empty string when the check box thread_local is not checked, else produce
thread_local

${mutable} produce mutable when the relation is mutable

${volatile} produce volatile when the relation is volatile

${stereotype} is replaced by the translation in C++ of the relation's stereotype (see the UML tab)

${multiplicity} is replaced by the multiplicity of the relation (see the UML tab), must be used in case the
multiplicity is a vector or array dimensioning ([and] are added when they are not present).

${association} is replaced by the association class (see UML tab)

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the relation, if not found for the class containing the relation etc ...

Dependency

A dependency having the stereotype friend produce a C++ friend declaration of the pointed class.

With an other stereotype the dependency may produce an #include of the artifact associated to the target
class, and you can choose to place this #include in the header or source file by editing the dependency usingn
the tab C++.

Inheritance

The class inheritance are managed at the class level.

${type} is replaced by the name of the inherited class more the actuals if the generated class instantiate
a template.

Extra member

The C++ definition of an extra member is set through the C++ tabs of the extra member dialog.

No macros.

Previous : profile

Next : C++ reverse

389

C++ reverse
The C++ code reverse is a plug-out directly written in C++, as the C++ generator.

Note that the C++ code reverse cannot be used as a C++ code round trip and doesn't allows to update already
defined classes having at least one member. Furthermore the preprocessing phase is not made by the C++
code reverse whose ignore all the preprocessor forms, but some substitutions may be asked, see at the end of
this chapter.

The C++ code reverse plug-out may be applied only on packages.

When you start the C++ code reverse, it asks you for directories (enter the directories then choose cancel to
start the reverse), then it reads all the sources placed under the selected directories and sub-directories. The
sources read by the C++ code reverse are the ones having the extension specified in the generation settings.
The tree formed by the directories and sub-directories produce an equivalent tree of sub-packages, on whose
the needed class view and artifact view are made to support the classes and artifacts. When a type is
referenced but not defined in the reverse files, a class having the same name is defined under an additional
package named unknown.

The reverse/roundtrip setting dialog of the modeler allows to specify through regular expression the files and /
or directories whose must not be taken into account during a reverse and roundtrip, for instance to bypass test
programs.

Obviously the C++ code reverse tries to produce the definitions made in BOUML at the artifact / class /
operation / relation / attribute levels. When it is possible it creates a relation rather than an attribute.

Except for the special case of the templates class definition like vector<bool>, a artifact is created for each
type definition, then a future C++ code generation may not produce a list of files similar to the reversed ones.

A C function cannot be specified in UML, the C++ code reverse loses them (generating a warning) except the
ones declared friend in a class.

The C++ code reverse works in two steps, during the first step it scans all the files to establish the list of
defined types, then the second step may reverse the files. The first phase tries to replace the missing #include
management, but it is not enough because the files whose are not under the selected directory (for instance the
standard headers files !) are never taken into account and the synonym types are confusing.

When the C++ code reverse has a problem, for instance when it reads a C function definition, it produces a
warning in the trace window. The trace window is automatically opened by BOUML, it may also be manually
opened through the Tools menu.

To do simple substitution on the read files : edit the project (top level package) to add a user property (through
the tab 'Properties') with the key #file and the value must be the absolute pathname of a file. Each line of the
specified file must contain :

just an identifier : in this case this identifier will be ignored during reverse. This is like #define identifier

a form identifier=value : in this case the identifier will replaced by the value during reverse. The value
must a token, for instance an other identifier, a float, a string etc. This is like #define identifier value.

Warning : the lines must not contains spaces or tabs.

Previous : C++ generator

Next : C++ roundtrip

390

C++ roundtrip
The C++ code roundtrip is a plug-out directly written in C++

The C++ code roundtrip updates from sources the classes of the model, add missing ones and remove useless
classes (after confirmation). If you use Bouml to generate C++ code it is not recommended to also use the C++
roundtrip because you will loose preprocessing forms and C functions and other forms not representable in
UML. The roundtrip is mainly dedicated to update a model used for documentation purpose.

The behavior of the C++ code roundtrip plug-out depends on the kind of the element it is applied :

applied on a class it updates this classe and nested classes, the other classes may be defined in the same
file (having the same associated artifact) are not updated nor the artifact. The plug-out can't be applied on
a nested class

applied on an artifact it updates the artifact and all the associated classes, and add classes newly defined
in the associated source file

applied on a class view it updates all the classes of the view and their nested classes, the other classes
may be defined in the corresponding files (associated to the same artifacts) are not updated nor the
artifacts

applied on a deployment view it updates all the artifacts in the view and their associated classes, and add
classes newly defined in the associated source files

applied on a package it updates all the artifacts and classes defined under this packages and sub
packages, and all the classes associated to the artifacts defined in the package and sub packages.
Furthermore a reverse is performed in files placed in the directories corresponding to the package and
sub packages and their sub directories. To apply the roundtrip at the project level update all the project
and create classes not yet part of the model and defined in the referenced directories and their sub
directories.

The sources read by the C++ code roundtrip are the ones having the extension specified in the generation
settings. The tree formed by the directories and sub-directories produce an equivalent tree of sub-packages, on
whose the needed class view and artifact view are made to support the classes and artifacts. The preprocessing
phase is not made by the C++ code roundtrip whose ignore all the preprocessor forms, but some substitutions
may be asked, see at the end of this chapter.

The reverse/roundtrip setting dialog of the modeler allows to specify through regular expression the files and /
or directories whose must not be taken into account during a reverse and roundtrip, for instance to bypass test
programs.

Obviously the C++ code roundtrip tries to produce the definitions made in BOUML at the artifact / class /
operation / relation / attribute levels. When it is possible it creates a relation rather than an attribute.

Except for the special case of the templates class definition like vector<bool>, a artifact is created for each
type definition, then a future C++ code generation may not produce a list of files similar to the reversed ones.

A C function cannot be specified in UML, the C++ code roundtrip loses them (generating a warning) except the
ones declared friend in a class.

The C++ code roundtrip works in four steps, during the first step all the project is upload, in the second step
the elements to roundtrip are prepared, in the third step it scans all the files to establish the list of defined
types, then the last step may roundtrip/reverse the files. The third phase tries to replace the missing #include
management, but it is not enough because the files whose are not under the selected directory (for instance the
standard headers files !) are never taken into account and the synonym types are confusing.

The trace window is used to indicate the steps, the updated classes and possible problems for instance when it
reads a C function definition it produces a warning in the trace window. The trace window is automatically
opened by BOUML, it may also be manually opened through the Tools menu.

To do simple substitution on the read files : edit the project (top level package) to add a user property (through
the tab 'Properties') with the key #file and the value must be the absolute pathname of a file. Each line of the
specified file must contain :

just an identifier : in this case this identifier will be ignored during roundtrip. This is like #define identifier

a form identifier=value : in this case the identifier will replaced by the value during roundtrip. The value
must a token, for instance an other identifier, a float, a string etc. This is like #define identifier value.

391

Warning : the lines must not contains spaces or tabs.

Previous : C++ reverse

Next : C generator

392

C Generator
The C code generator is a plug-out directly written in C++.

The generated sources follows the definition made in BOUML at the artifact / class / operation / relation /
attribute levels, reusing the parts specific to the C++ language with adapted values.

The best way to get the right generation settings is to load the project C part of the distribution, or
to import its settings.

When the code generation is applied on a artifact associated to several classes, the code generation is made for
all these classes. Nevertheless the C code generator produce first the code in memory and update the
appropriate files only when it is necessary, to not change the last write date of the files for nothing. Depending
on the toggle verbose code generation of the global menu Languages the code generator is verbose or not.

The C code generator plug-out may be called on :

a class : in this case the code generation is in fact applied on the class's artifact, then on all the classes
associated to this artifact

a artifact : in this case the code generation is in fact applied on all the classes associated to the artifact

a class view : the code generation will be applied on all the sub classes, then on all the artifacts associated
to these classes

a deployment view : the code generation is applied on all the sub artifacts

a package (may be the project itself) : the code generation will be applied on all the sub class views and
deployment views, then on all their sub classes and artifacts.

When the C code generator is ask through the Tools menu, it is applied on the project, then on all the artifacts.

The name of the generated files depend on the artifact name, the extension depend on the language and is
fixed for each by the generations settings (see below), the directory where the files are generated may be set in
each package containing directly or indirectly the artifact (see generation directory).

artifact

The C definition of a artifact is set through the C++ header and C++ source tabs of the artifact dialog.

The code generation depend on the stereotype of the artifact :

text : the C definition of the artifact is produced without changes, the name of the generated file is the
name of the artifact, including the extension.

source : see below.

else nothing is generated for the artifact.

artifact header C++

The generated file name is the artifact's name with the extension specified in the first C++ tab of the
generations settings

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the C
code generator are :

${NAME} produce the artifact name capitalized, ${Name} produce the artifact name with the first letter
capitalized, ${nAME} produce the artifact name forced in lowercase, at least ${name} produce the
artifact name without modification.

${comment} is replaced by the artifact description adding //

${description} is replaced by the artifact description without adding //

${includes} is replaced by the automatically generated #include forms, it is also a good place to add
your #include forms, when the ones produced by the code generator are not sufficient. To limit the
included files number and to not produce circular #include, the C code generator does not produce an
#include to define a type only used by pointer (*). The C code generator does not look at in the operations

393

body, only the operation's profiles, relations and attributes etc ... are used to compute the needed #include
list. You can also use dependencies between classes to add #include, and to choose to place them in the
header of the source file editing the dependency tab C++. ${includes} and ${all_includes} are exclusive.

Note : the generation settings allows to choose between four ways to produce #include :

without path : ask for the C code generator to generate the #include without relative or absolute path

with absolute path : ask for the C code generator to generate the absolute path of the automatically
included files.

with relative path : ask for the C code generator to generate the relative path of the automatically
included files, relative to the file containing the #include

with root relative path : ask for the C code generator to generate the relative path of the automatically
included files, relative to the directory specified by the generation settings

${all_includes} is replaced by all the automatically generated #include forms, it is also a good place to
add your #include forms, when the ones produced by the code generator are not sufficient. In this case
the code generator doesn't produce declarations in the header file nor #include in the source file, except
the ones added by you. ${all_includes} and ${includes} are exclusive.

${declarations} is replaced by the class declarations when the #include form is not produced, it is also a
good place to add your declarations, when the ones produced by the code generator are not sufficient.
Produce nothing if ${all_includes} is used.

${definition} is replaced by the definition of the classes and extra artifact definitions associated to the
artifact

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the artifact, if not found for the deployment view containing the artifact, if not found in
the package containing the deployment view etc ...

artifact source C

The generated file name is the artifact's name with the extension specified in the first C++ tab of the
generations settings.

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
C++ code generator are :

${NAME} produce the artifact name capitalized, ${Name} produce the artifact name with the first letter
capitalized, ${nAME} produce the artifact name forced in lowercase, at least ${name} produce the
artifact name without modification.

${comment} is replaced by the description of the artifact adding //

${description} is replaced by the artifact description without adding //

${includes} if ${all_includes} is not used in the header definition, it is replaced by the automatically
generated #include and using forms, corresponding to the declaration generated in the header file. If
${all_includes} is used in the header definition, it is replaced by the #include of the header. It is also a
good place to add your #include and using forms.

${members} is replaced by the members of the classes associated to the artifact.

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the artifact, if not found for the deployment view containing the artifact, if not found in
the package containing the deployment view etc ...

Class

The C++ definition of a class is set through the Uml and C++ tabs of the class dialog.

The generated C type depends on the translation in C++ of its stereotype (see generation settings), a c_enum
will produce an enum, c_struct a struct, a c_union an union and a c_typedef a typedef, and a c_module will
produce its members (including operations as functions), in the other cases nothing is produced.

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the

394

C++ code generator are :

${comment} is replaced by the description of the class adding /* */

${description} is replaced by the class description without adding /* */

${name} is replaced by the class's name

${members} is replaced by the code generated for the class's members (relations, attributes, operations)
following the browser order.

${items} only for the enums, is replaced by the enum's items

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the class, if not found for the container of the class (an other class of a class view) etc ...

In the special case where the class is declared external, its C++ type declaration must contains at least one
line indicating how the name of the class is generated, the other lines will be added in the header file of the
components referencing the class. By default the first line only contain ${name} meaning that the name is
produced unchanged, the only allowed keywords are ${name}, ${Name} and ${NAME}. Remember in C you
have to add the kind of the type like struct.

Operation

The C++ definition of an operation is set through the Uml and C++ tabs of the operation dialog. In C an
operation produces a function, and this is done only for classes stereotyped c_module.

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the C
code generator are :

${comment} is replaced by the description of the operation adding /* */

${description} is replaced by the operation description without adding /* */

${static} produce static in the definition of a function when the operation is a class operation (see the
UML tab). The declaration of a non static function is produced in the header file.

${type} is replaced by the returned value type (see the UML tab)

${multiplicity} is replaced by the multiplicity of the return type (see the UML tab), a priori used in a
comment

${name} is replaced by the operation's name

${(} and ${)} produce (and), but there are also a mark for BOUML to find the parameters list

${t<n>} and ${p<n>} produce the type and name of each parameter (count from 0), this allows you to
remove a parameter, add type modifiers etc ...

${m<n>} produce the multiplicity of each parameter (count from 0), a priori used in a comment

${body} is replaced by the body of the operation I nthe source file, this macro may also be replaced by
the body itself (BOUML use this way for the get and set operations associated to a relation/attribute). The
usage of ${body} has a great advantage : when you hit Default definition or From declaration the body
is not cleared ! At least BOUML share the declaration and definition forms of the operations (and other
objects) to minimize the needed memory size, ${body} help for this ! The indentation of the keyword
${body} is added at the beginning of each line except the ones starting by a '#' or when the previous one
ends by '\'.

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the operation, if not found for the class containing the operation etc ...

If the toggle preserve operations's body is set through the Languages menu, the generators do not modify the
body of the operations protected by dedicated delimiters. This means that for them the body definition set
through BOUML is not used. The first time you generate the code with the toggle set, because the delimiters
are not yet present in the generated code, the operation's body will be updated depending on their definition
under BOUML. After, while the toggle is set and the delimiters present, the bodies will not change, allowing
you to modify them out of BOUML.

Notes :

395

In case the file containing a body definition is not consistent with the artifact under BOUML, the body will
be regenerated by the code generation, using its definition under the model.

When you import a project, the body of the imported operations must be the right one in the imported
model. The preserved bodies of the imported operations will not be find because the identifier of an
operation used to mark its body changes during the import.

The bodies under the model are not updated by the code generation

Only the operations using the keyword ${body} may have a preserved body.

The only modification you can do in the lines containing the delimiters is the indent.

The toggle is saved in the file associated to the project, be sure the save is done when you change this
toggle !

Attribute

The C++ definition of an attribute is set through the Uml and C++ tabs of the attribute dialog.

An attribute may be a C variable or the item of an enumeration.

standard attribute

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
C++ code generator are :

${comment} is replaced by the description of the attribute adding /* */

${description} is replaced by the attribute description without adding /* */

${static} produce static in the source file when the attribute is a class attribute (see the UML tab). The
declaration of a non static variable is produced in the header file.

${volatile} produce volatile when the attribute is volatile

${const} produce const when the attribute is const (see the UML tab)

${type} is replaced by the type of the attribute (see the UML tab)

${stereotype} is replaced by the translation in C++ of the relation's stereotype (see the UML tab)

${multiplicity} is replaced by the multiplicity of the relation (see the UML tab), must be used in case the
multiplicity is a vector or array dimensioning ([and] are added when they are not present).

${name} is replaced by the attribute's name (see the UML tab)

${value} is replaced by the initial value of the static attribute in the definition part generated in the
source file (see the UML tab)

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the attribute, if not found for the class containing the attribute etc ...

enumeration item

The macros known by the C++ code generator are :

${comment} is replaced by the description of the item adding //

${description} is replaced by the item description without adding //

${name} is replaced by the item's name (see the UML tab)

${value} is replaced by the value of the item (see the UML tab)

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the attribute, if not found for the class containing the attribute etc ...

396

Relation

The C++ definition of a relation is set through the Uml and C++ tabs of the relation dialog.

Relation equivalent to a C variable

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
C++ code generator are :

${comment} is replaced by the description of the relation adding /* */

${description} is replaced by the relation description without adding /* */

${static} produce static in the source file when the relation is a class relation (see the UML tab). The
declaration of a non static variable is produced in the header file.

${const} produce const when the relation is read-only (see the UML tab)

${type} is replaced by the class pointed by the relation (see the UML tab)

${name} is replaced by the relation's role name (see the UML tab)

${inverse_name} is replaced by the name of the inverse role (see the UML tab)

${value} is replaced by the initial value of the static relation in the definition part generated in the source
file (see the UML tab)

${volatile} produce volatile when the relation is volatile

${stereotype} is replaced by the translation in C++ of the relation's stereotype (see the UML tab)

${multiplicity} is replaced by the multiplicity of the relation (see the UML tab), must be used in case the
multiplicity is a vector or array dimensioning ([and] are added when they are not present).

${association} is replaced by the association class (see UML tab)

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the relation, if not found for the class containing the relation etc ...

Dependency

The dependency may produce an #include of the artifact associated to the target class, and you can choose to
place this #include in the header or source file by editing the dependency using the tab C++.

Previous : C++ roundtrip

Next : Java generator

397

Java generator
The Java code generator is a plug-out directly written in C++.

The generated sources follows the definition made in BOUML at the artifact / class / operation / relation /
attribute / extra member levels.

When the code generation is applied on a artifact associated to several classes, the code generation is made for
all these classes. Nevertheless the the Java code generator produce first the code in memory and update the
appropriate files only when it is necessary, to not change the last write date of the files for nothing. Depending
on the toggle verbose code generation of the global menu Languages the code generator is verbose or not.

The Java code generator plug-out may be called on :

a class : in this case the code generation is in fact applied on the class's artifact, then on all the classes
associated to this artifact

a artifact : in this case the code generation is in fact applied on all the classes associated to the artifact

a class view : the code generation will be applied on all the sub classes, then on all the artifacts associated
to these classes

a deployment view : the code generation is applied on all the sub artifacts

a package (may be the project itself) : the code generation will be applied on all the sub class views and
deployment views, then on all their sub classes and artifacts.

When the Java code generator is ask through the Tools menu, it is applied on the project, then on all the
artifacts.

The name of the generated files depend on the artifact name, the extension depend on the language and is
fixed for each by the generations settings (see below), the directory where the files are generated may be set in
each package containing directly or indirectly the artifact (see generation directory).

artifact

The Java definition of a artifact is set through the Java source tabs of the artifact dialog.

The code generation depend on the stereotype of the artifact :

text : the Java definition of the artifact is produced without changes, the name of the generated file is the
name of the artifact, including the extension.

source : see below.

else nothing is generated for the artifact.

The generated file name is the artifact's name with the extension specified in the first Java tab of the
generations settings :

398

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
Java code generator are :

${NAME} produce the artifact name capitalized, ${Name} produce the artifact name with the first letter
capitalized, ${nAME} produce the artifact name forced in lowercase, at least ${name} produce the
artifact name without modification.

${comment} is replaced by the artifact description adding /* */

${description} is replaced by the artifact description without adding /* */

${package} is replaced by the package xx forms, dependent on the package specifications associated to
the BOUML package containing the deployment view where the artifact is defined.

${import} is replaced by import forms specified by dependencies stereotypes import from classes
produced by the artifact to classes or packages.

${definition} is replaced by the definition of the classes and extra artifact definitions associated to the
artifact.

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the artifact, if not found for the deployment view containing the artifact, if not found in
the package containing the deployment view etc ...

Class

The Java definition of a class is set through the Uml, Parametrized, Instantiate and Java tabs of the class dialog.

A Java type definition may be a class, an interface or an enum (may be defined through a class), depending on
the stereotype and its translation in Java (see generation settings).

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
Java code generator are :

${comment} is replaced by the description of the class adding /* */

${description} is replaced by the class description without adding /* */

${public} produce public when the class is declared public

${final} produce final when the class is declared final

${abstract} produce abstract when the class is abstract

399

${name} is replaced by the class's name

${extend} is replaced by the class inheritance

${implement} is replaced by the interface inheritance

${members} is replaced by the code generated for all the class's members (relations, attributes,
operations and extra members) following the browser order.

${cases} only for the enums, is replaced by the enum's items definition

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the class, if not found for the container of the class (an other class of a class view) etc ...

In the special case where the class is declared external, its Java type declaration must contains a line
indicating how the name of the class is generated, by default ${name} meaning that the name is produced
unchanged, the only allowed keywords are ${name}, ${Name} and ${NAME}.

Operation

The Java definition of an operation is set through the Uml and Java tabs of the operation dialog.

The indentation of the first line of the declaration/definition give the indentation added to the class definition
for all the operation definition.

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
Java code generator are :

${comment} is replaced by the description of the operation adding /* */

${description} is replaced by the operation description without adding /* */

${visibility} produce the visibility (see the UML tab)

${final} produce final when ye operation is specified final

${static} produce static when the operation is a class operation (see the UML tab), default in an interface
when the check box default is checked, else an empty string

${abstract} produce abstract when the operation is abstract (see the UML tab)

${synchronized} produce synchronized when the operation is synchronized

${type} is replaced by the value type (see the UML tab)

${multiplicity} is replaced by the multiplicity of the return type (see the UML tab), a priori used in a
comment

${name} is replaced by the name of the operation.

${(} and ${)} produce (and), but there are also a mark for BOUML to find the parameters list

${t<n>} and ${p<n>} produce the type and the name of each parameter (count from 0), this allows you
to remove a parameter, etc ...

${m<n>} produce the multiplicity of each parameter (count from 0), a priori used in a comment

${throws} is replaced by the form throws ... when at least an exception is defined in the UML tab.

${staticnl} produce a line break when the operation is static, else an empty string. In case you do not
like this notation, change the generation settings to remove this macro.

${body} is replaced by the body of the operation, this macro may also be replaced by the body itself
(BOUML use this way for the get and set operations associated to a relation/attribute). The usage of
${body} has a great advantage : when you hit Default definition the body is not cleared ! At least
BOUML share the definition forms of the operations (and other objects) to minimize the needed memory
size, ${body} help for this ! The indentation of the keyword ${body} is added at the beginning of each
line.

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the operation, if not found for the class containing the operation etc ...If the toggle

400

preserve operations's body is set through the Languages menu, the generators do not modify the body of
the operations protected by dedicated delimiters. This means that for them the body definition set through
BOUML is not used. The first time you generate the code with the toggle set, because the delimiters are
not yet present in the generated code, the operation's body will be updated depending on their definition
under BOUML. After, while the toggle is set and the delimiters present, the bodies will not change,
allowing you to modify them out of BOUML.

Notes :

In case the file containing a body definition is not consistent with the artifact under BOUML, the body will
be regenerated by the code generation, using its definition under the model.

When you import a project, the body of the imported operations must be the right one in the imported
model. The preserved bodies of the imported operations will not be find because the identifier of an
operation used to mark its body changes during the import.

The bodies under the model are not updated by the code generation, use roundtrip body for that

Only the operations using the keyword ${body} may have a preserved body.

The only modification you can do in the lines containing the delimiters is the indent.

The toggle is saved in the file associated to the project, be sure the save is done when you change this
toggle !

Attribute

The Java definition of an attribute is set through the Uml and Java tabs of the attribute dialog.

The indentation of the first line of the definition give the indentation added to the class definition for all the
attribute definition.

An attribute may be a standard attribute or the item of an enumeration defined through a class.

standard attribute

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
Java code generator are :

${comment} is replaced by the description of the attribute adding /* */

${description} is replaced by the attribute description without adding /* */

${visibility} produce the visibility (see the UML tab)

${static} produce static when the attribute is a class attribute (see the UML tab)

${final} produce final when the attribute is final

${transient} produce transient when the attribute is transient

${volatile} produce volatile when the operation is volatile

${type} is replaced by the type of the attribute (see the UML tab)

${stereotype} is replaced by the translation in Java of the relation's stereotype (see the UML tab)

${multiplicity} is replaced by the multiplicity of the relation (see the UML tab), must be used in case the
multiplicity is a vector or array dimensioning ([and] are added when they are not present).

${name} is replaced by the attribute's name (see the UML tab)

${value} is replaced by the initial value of the attribute (see the UML tab)

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the attribute, if not found for the class containing the attribute etc ...

enumeration item

The macros known by the Java code generator are :

401

${comment} is replaced by the description of the item adding /* */

${description} is replaced by the item description without adding /* */

${name} is replaced by the item's name (see the UML tab)

${class} is replaced by the name of the class supporting the enumeration

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the attribute, if not found for the class containing the attribute etc ...

Relation

The Java definition of a relation is set through the Uml and Java tabs of the relation dialog.

The indentation of the first line of the definition give the indentation added to the class definition for all the
relation definition.

Relation equivalent to an attribute

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
Java code generator are :

${comment} is replaced by the description of the attribute adding /* */

${description} is replaced by the attribute description without adding /* */

${visibility} produce the visibility (see the UML tab)

${static} produce static when the attribute is a class attribute (see the UML tab)

${final} produce final when the attribute is final

${transient} produce transient when the attribute is transient

${volatile} produce volatile when the operation is volatile

${type} is replaced by the name of the class pointed by the relation (see the UML tab)

${name} is replaced by the role's name (see the UML tab)

${inverse_name} is replaced by the name of the inverse role (see the UML tab)

${value} is replaced by the initial value of the relation (see the UML tab)

${stereotype} is replaced by the translation in Java of the relation's stereotype (see the UML tab)

${multiplicity} is replaced by the multiplicity of the relation (see the UML tab), must be used in case the
multiplicity is a vector or array dimensioning ([and] are added when they are not present).

${association} is replaced by the association class (see UML tab)

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the relation, if not found for the class containing the relation etc ...

Inheritance

The class inheritance are managed at the class level.

${type} is replaced by the name of the inherited class more the actuals if the generated class instantiate
a generic.

Extra member

The Java definition of an extra member is set through the Java tabs of the extra member dialog.

No macros.

402

Previous : C generator

Next : Java reverse

403

Java reverse
The Java code reverse is a plug-out directly written in C++.

Note that the Java code reverse cannot be used to update already defined classes, the reverse creates the
reversed classes into the model without considering already existing classes. To update existing classes from
source use the Java code roundtrip.

The Java code reverse plug-out may be applied only on a package.

When you start the Java code reverse, it asks you for java catalog files, use cancel to finish to give the catalogs
(may be immediately), then it ask for a directory, then it reads all the sources placed under the selected
directory and sub-directories. The sources read by the Java code reverse are the ones having the extension
specified in the generation settings. The tree formed by the sub-directories produce an equivalent tree of sub-
packages, on whose the needed class view and deployment view are made to support the classes and artifacts.
When a type is referenced but not defined in the reverse files, a class having the same name is defined under
an additional package named unknown.

The reverse/roundtrip setting dialog of the modeler allows to specify through regular expression the files and /
or directories whose must not be taken into account during a reverse and roundtrip, for instance to bypass test
programs.

Obviously the Java code reverse tries to produce the definitions made in BOUML at the artifact / class /
operation / relation / attribute levels. When it is possible it creates a relation rather than an attribute.

The Java code reverse works in two steps, during the first step it scans all the files to establish the list of
defined types, then the second step may reverse the files.

When the Java code reverse has a problem, for instance on a syntax error, it produces a warning in the trace
window. The trace window is automatically opened by BOUML, it may also be manually opened through the
Tools menu.

When the reverse is done, the number of reversed classes, operations, attributes and relations is written, for
instance in case I reverse a full JDK Java distribution :

See also Java roundtrip and Java catalog.

Previous : Java generator

Next : Java roundtrip

404

Java roundtrip
The Java code roundtrip is a plug-out directly written in C++.

The Java code roundtrip updates from sources the classes of the model, add missing ones and remove useless
classes (after confirmation).

The behavior of the Java code roundtrip plug-out depends on the kind of the element it is applied :

applied on a class it updates this classe and nested classes, the other classes may be defined in the same
file (having the same associated artifact) are not updated nor the artifact. The plug-out can't be applied on
a nested class

applied on an artifact it updates the artifact and all the associated classes, and add classes newly defined
in the associated source file

applied on a class view it updates all the classes of the view and their nested classes, the other classes
may be defined in the corresponding files (associated to the same artifacts) are not updated nor the
artifacts

applied on a deployment view it updates all the artifacts in the view and their associated classes, and add
classes newly defined in the associated source files

applied on a package it updates all the artifacts and classes defined under this packages and sub
packages, and all the classes associated to the artifacts defined in the package and sub packages.
Furthermore a reverse is performed in files placed in the directories corresponding to the package and
sub packages and their sub directories. To apply the roundtrip at the project level update all the project
and create classes not yet part of the model and defined in the referenced directories and their sub
directories.

When you start the Java code roundtrip, it asks you for java catalog files, use cancel to finish to give the
catalogs (may be immediately), then it perform the roundtrip and may be reverse depending on the case. The
sources read by the Java code roundtrip are the ones having the extension specified in the generation settings.
The tree formed by the sub-directories produce an equivalent tree of sub-packages, on whose the needed class
view and deployment view are made to support the classes and artifacts. When a type is referenced but not
defined in the reverse files, a class having the same name is defined under an additional package named
unknown.

The reverse/roundtrip setting dialog of the modeler allows to specify through regular expression the files and /
or directories whose must not be taken into account during a reverse and roundtrip, for instance to bypass test
programs.

Obviously the Java code roundtrip tries to update existing classes and members, but sometimes it can't
recognize and old member (mainly in case of renaming) deletes it and create a new one. Of course the Java
code roundtrip tries to produce the definitions made in BOUML at the artifact / class / operation / relation /
attribute levels. When it is possible it creates a relation rather than an attribute.

The Java code roundtrip works in four steps, during the first step all the project is upload, in the second step
the elements to roundtrip are prepared, in the third step it scans all the files to establish the list of defined
types, then the last step may roundtrip/reverse the files.

The trace window is used to indicate the steps, the updated classes and possible problems. The trace window is
automatically opened by BOUML, it may also be manually opened through the Tools menu.

When the reverse is done the number of updated and created classes is written, then the useless elements are
marked (all previous marks are removed) to allow you to know who they are, and the roundtrip ask for you to
confirm if is delete these elements or not.

See also Java reverse and Java catalog.

Previous : Java reverse

Next : Java catalog

405

Java catalog
Java Catalog is a plug-out directly written in C++.

Java catalog is a very practical tool allowing you to import classes into BOUML. An imported class comes in
BOUML without the body of its operations and without its private members : the goal is to import Java library
classes in the model, not to generate them. Java catalog may also be used to browser through the Java
packages, search information about a given class etc ... without sending them to BOUML.

To work, Java catalog need Java sources, this must not be a problem, these ones are generally available even
for your preferred JDK version.

The Java catalog plug-out may be applied only on a package, it is used through a window :

The upper part is a browser like in BOUML except that only the package and classes are showed. The lower
part (reduced when Java catalog starts) shows the description of the selected class interpreting the html forms.
The top level package in the browser part (here p) is the name of the package in BOUML in which Java catalog
is applied.

To make a catalog, use the scan entry of the file menu or the button representing a microscope, Java catalog
will ask for a directory and scan all the Java files in this one and its sub-directories. For instance if src contains
all the Java sources :

Obviously it is possible to do several scan phase in different directories to complete the catalog. At this level
nothing is done on the BOUML side.

The reverse/roundtrip setting dialog of the modeler allows to specify through regular expression the files and /
or directories whose must not be taken into account during a reverse and roundtrip, for instance to bypass test
programs.

To save your catalog use the save entry of the file menu or the associated button.

Open allows to get an already made catalog, may be to complete it.

406

The main goal of Java catalog is to send a class or all the classes under a package and its sub-packages to
BOUML, using the menu appearing with a right mouse button click on a class or a package into the Java
catalog browser :

In case the sent class(es) reference other classes (for instance to inherits them), these classes are also sent
with the classes they reference etc ...

For instance, in case the BOUML project p is empty and the class sunw.io.Serializable is sent, the result will be
:

As you can see, contrarily to the result of a standard Java reverse, the two classes do not have associated
artifact, because the goal is just to allow to have a class generalizing Serializable, or having an attribute of this
type etc ...

Thanks to Java catalog, you do not have to define the JDK and other classes by hand in BOUML to use them !

Note : the saving of a catalog is just a list of classes and the pathname of the file defining them, not the classes
definitions. When you send a class to BOUML, Java catalog reverse the associated file to get the class
definition, this implies that you must not delete or move the Java source files defining the classes of the catalog.

Previous : Java roundtrip

Next : Php generator

407

PHP generator
The PHP code generator is a plug-out directly written in C++.

The generated sources follows the definition made in BOUML at the artifact / class / operation / relation /
attribute / extra member levels.

When the code generation is applied on a artifact associated to several classes, the code generation is made for
all these classes. Nevertheless the the Php code generator produce first the code in memory and update the
appropriate files only when it is necessary, to not change the last write date of the files for nothing. Depending
on the toggle verbose code generation of the global menu Languages the code generator is verbose or not.

The Php code generator plug-out may be called on :

a class : in this case the code generation is in fact applied on the class's artifact, then on all the classes
associated to this artifact

a artifact : in this case the code generation is in fact applied on all the classes associated to the artifact

a class view : the code generation will be applied on all the sub classes, then on all the artifacts associated
to these classes

a deployment view : the code generation is applied on all the sub artifacts

a package (may be the project itself) : the code generation will be applied on all the sub class views and
deployment views, then on all their sub classes and artifacts.

When the Php code generator is ask through the Tools menu, it is applied on the project, then on all the
artifacts.

The name of the generated files depend on the artifact name, the extension depend on the language and is
fixed for each by the generations settings (see below), the directory where the files are generated may be set in
each package containing directly or indirectly the artifact (see generation directory).

artifact

The Php definition of a artifact is set through the Php source tabs of the artifact dialog.

The code generation depend on the stereotype of the artifact :

text : the Php definition of the artifact is produced without changes, the name of the generated file is the
name of the artifact, including the extension.

source : see below.

else nothing is generated for the artifact.

The generated file name is the artifact's name with the extension specified in the first Php tab of the
generations settings :

408

There are four ways to produce the require_once forms

without path : ask for the Php code generator to generate them without relative or absolute path

with absolute path : ask for the Php code generator to generate the absolute path of the automatically
required files.

with relative path : ask for the Php code generator to generate the relative path of the automatically
required files, warning : relatively to the file containing the require_once

with root relative path : ask for the Php code generator to generate the relative path of the automatically
required files, relative to the directory specified by the generation settings (it is probably indicated in Php
include_path)

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the Php
code generator are :

${NAME} produce the artifact name capitalized, ${Name} produce the artifact name with the first letter
capitalized, ${nAME} produce the artifact name forced in lowercase, at least ${name} produce the
artifact name without modification.

${comment} is replaced by the artifact description adding /* */

${description} is replaced by the artifact description without adding /* */

${namespace} is replaced by the namespace xx; dependent on the namespace specifications associated
to the package containing the deployment view where the artifact is defined.

${require_once} is replaced by the require_once forms for the files associated to the classes referenced
by the ones produced by the artifact. It is also a good place to add your required_once forms, when the
ones produced by the code generator are not sufficient. The Php code generator does not look at in the
operations body, only the operation's profiles, relations and attributes, classes inheritances etc ... are used
to compute the needed require_once list.

${definition} is replaced by the definition of the classes and extra artifact definitions associated to the
artifact.

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the artifact, if not found for the deployment view containing the artifact, if not found in
the package containing the deployment view etc ...

Class

409

The Php definition of a class is set through the Uml, Parametrized, Instantiate and Php tabs of the class dialog.

A Php type definition may be a class, an interface or an enum defined through a class, depending on the
stereotype and its translation in Php (see generation settings).

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the Php
code generator are :

${comment} is replaced by the description of the class adding /* */

${description} is replaced by the class description without adding /* */

${final} produce final when the class is declared final

${abstract} produce abstract when the class is abstract

${name} is replaced by the class's name

${extend} is replaced by the class inheritance

${implement} is replaced by the interface inheritance

${members} is replaced by the code generated for all the class's members (relations, attributes,
operations and extra members) following the browser order.

${items} produces the enumeration items of an enum. other members are not produced

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the class, if not found for the container of the class (an other class of a class view) etc ...

In the special case where the class is declared external, its Php type declaration must contains a line
indicating how the name of the class is generated, by default ${name} meaning that the name is produced
unchanged, the only allowed keywords are ${name}, ${Name} and ${NAME}.An optional second line may be
given to specify the require_once form to produce in artifact containing classes referencing this external class.

Operation

The Php definition of an operation is set through the Uml and Php tabs of the operation dialog.

The indentation of the first line of the declaration/definition give the indentation added to the class definition
for all the operation definition.

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the Php
code generator are :

${comment} is replaced by the description of the operation adding /* */

${description} is replaced by the operation description without adding /* */

${visibility} produce the visibility (see the UML tab), except if the visibility is package (use this case to
produce Php4 code)

${static} produce static when the operation is a class operation (see the UML tab)

${final} produce an empty string when the check box final is not checked, else produce final

${abstract} produce abstract when the operation is abstract (see the UML tab)

${name} is replaced by the name of the operation.

${type} is replaced by the returned value type (see the UML tab)

${multiplicity} is replaced by the multiplicity of the return type (see the UML tab), a priori used in a
comment

${(} and ${)} produce (and), but there are also a mark for BOUML to find the parameters list

${t<n>}, ${p<n>} and ${v<n>} produce the type, name and default value of each parameter (count
from 0), this allows you to remove a parameter, etc ...

${m<n>} produce the multiplicity of each parameter (count from 0), a priori used in a comment

410

${staticnl} produce a line break when the operation is static, else an empty string. In case you do not
like this notation, change the generation settings to remove this macro.

${body} is replaced by the body of the operation, this macro may also be replaced by the body itself
(BOUML use this way for the get and set operations associated to a relation/attribute). The usage of
${body} has a great advantage : when you hit Default definition the body is not cleared ! At least
BOUML share the definition forms of the operations (and other objects) to minimize the needed memory
size, ${body} help for this ! The indentation of the keyword ${body} is added at the beginning of each
line.

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the operation, if not found for the class containing the operation etc ...If the toggle
preserve operations's body is set through the Languages menu, the generators do not modify the body of
the operations protected by dedicated delimiters. This means that for them the body definition set through
BOUML is not used. The first time you generate the code with the toggle set, because the delimiters are
not yet present in the generated code, the operation's body will be updated depending on their definition
under BOUML. After, while the toggle is set and the delimiters present, the bodies will not change,
allowing you to modify them out of BOUML.

Notes :

In case the file containing a body definition is not consistent with the artifact under BOUML, the body will
be regenerated by the code generation, using its definition under the model.

When you import a project, the body of the imported operations must be the right one in the imported
model. The preserved bodies of the imported operations will not be find because the identifier of an
operation used to mark its body changes during the import.

The bodies under the model are not updated by the code generation, use roundtrip body for that

Only the operations using the keyword ${body} may have a preserved body.

The only modification you can do in the lines containing the delimiters is the indent.

The toggle is saved in the file associated to the project, be sure the save is done when you change this
toggle !

Attribute

The Php definition of an attribute is set through the Uml and Php tabs of the attribute dialog.

The indentation of the first line of the definition give the indentation added to the class definition for all the
attribute definition.

An attribute may be a standard attribute or the item of an enumeration defined through a class.

standard attribute

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the Php
code generator are :

${comment} is replaced by the description of the attribute adding /* */

${description} is replaced by the attribute description without adding /* */

${visibility} produce the visibility (see the UML tab), except if the visibility is package (use this case to
produce Php4 code)

${static} produce static when the attribute is a class attribute (see the UML tab)

${const} produce const when the attribute is read only (see the UML tab)

${var} produce var when the relation is not read only nor static(see the UML tab) and the visibility is not
package, else produce an empty string

${name} is replaced by the attribute's name (see the UML tab)

${value} is replaced by the initial value of the attribute (see the UML tab)

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if

411

searched first for the attribute, if not found for the class containing the attribute etc ...

Relation

The Php definition of a relation is set through the Uml and Php tabs of the relation dialog.

The indentation of the first line of the definition give the indentation added to the class definition for all the
relation definition.

Relation equivalent to an attribute

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the Php
code generator are :

${comment} is replaced by the description of the attribute adding /* */

${description} is replaced by the attribute description without adding /* */

${visibility} produce the visibility (see the UML tab), except if the visibility is package (use this case to
produce Php4 code)

${static} produce static when the attribute is a class attribute (see the UML tab)

${const} produce const when the attribute is read only (see the UML tab)

${var} produce var when the relation is not read only nor static(see the UML tab) and the visibility is not
package, else produce an empty string

${name} is replaced by the role's name (see the UML tab)

${inverse_name} is replaced by the name of the inverse role (see the UML tab)

${value} is replaced by the initial value of the relation (see the UML tab)

${stereotype} is replaced by the translation in Php of the relation's stereotype (see the UML tab)

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the relation, if not found for the class containing the relation etc ...

Inheritance from class/interface

The class inheritance are managed at the class level.

${type} is replaced by the name of the inherited class/interface may be with with namespace.

Inheritance from trait

In that special case the forms use are produced from the keyword ${member} at the class level.

When ${type} is alone in the definition, it is replaced by two spaces then use then a space then the name
of the inherited trait may be with namespace then a ';' then a newline.

Else ${type} is just replaced by the name of the inherited trait may be with namespace, of course the
other characters presents in the definition are also produced, and in case the last character of the
definition is a comma a new line is not generated allowing you to use several traits on the same line. The
best way to see how to model complex cases is probably to use the reverse and to see what it did.

Extra member

The Php definition of an extra member is set through the Php tabs of the extra member dialog.

No macros.

Previous : Java catalog

412

Next : Php reverse

413

Php reverse
The Php code reverse is a plug-out directly written in C++.

Note that the Php code reverse cannot be used as a Php code round trip and doesn't allows to update already
defined classes having at least one member.

The Php code reverse plug-out may be applied only on a package.

When you start the Php code reverse, it ask for a directory, then it reads all the sources placed under the
selected directory and sub-directories. The sources read by the Php code reverse are the ones having the
extension specified in the generation settings. The tree formed by the sub-directories produce an equivalent
tree of sub-packages, on whose the needed class view and deployment view are made to support the classes
and artifacts. When a type is referenced but not defined in the reverse files, a class having the same name is
defined under an additional package named unknown.

The reverse/roundtrip setting dialog of the modeler allows to specify through regular expression the files and /
or directories whose must not be taken into account during a reverse and roundtrip, for instance to bypass test
programs.

Obviously the Php code reverse tries to produce the definitions made in BOUML at the artifact / class /
operation / relation / attribute levels. When it is possible it creates a relation rather than an attribute.

The Php code reverse works in two steps, during the first step it scans all the files to establish the list of
defined types, then the second step may reverse the files.

When the Php code reverse has a problem, for instance on a syntax error, it produces a warning in the trace
window. The trace window is automatically opened by BOUML, it may also be manually opened through the
Tools menu.

The reversed files are considered composed in three parts :

a header without class not interface definition and containing "<?php". This part if placed at the beginning
of the generated artifact

a part starting with the first class or interface and finishing with a class or an interface without containing
any use nor namespace. The reversed classes and interfaces must be at the toplevel, this means not
embedded in a if or other form. The possible non class forms between the classes/interfaces are supported
by an extra artifact definition. This part produces ${definition} in the definition of the artifact

the rest if the file, probably containing the marker "?>", this part is placed at the end of the definition of
the artifact.

When the reverse is done, the number of reversed classes, operations, attributes and relations is written, for
instance in case I reverse the sources of Joomla 1.5RC :

414

Previous : Php generator

Next : Php roundtrip

415

Php roundtrip
The Php code roundtrip is a plug-out directly written in C++.

The Php code roundtrip updates from sources the classes of the model, add missing ones and remove useless
classes (after confirmation).

The behavior of the Php code roundtrip plug-out depends on the kind of the element it is applied :

applied on a class it updates this classe, the other classes may be defined in the same file (having the
same associated artifact) are not updated nor the artifact. The plug-out can't be applied on a nested class

applied on an artifact it updates the artifact and all the associated classes and associated extra artifact
members, and add classes newly defined in the associated source file

applied on a class view it updates all the classes of the view, the other classes may be defined in the
corresponding files (associated to the same artifacts) are not updated nor the artifacts

applied on a deployment view it updates all the artifacts in the view and their associated classes, and add
classes newly defined in the associated source files

applied on a package it updates all the artifacts and classes defined under this packages and sub
packages, and all the classes associated to the artifacts defined in the package and sub packages.
Furthermore a reverse is performed in files placed in the directories corresponding to the package and
sub packages and their sub directories. To apply the roundtrip at the project level update all the project
and create classes not yet part of the model and defined in the referenced directories and their sub
directories.

The sources read by the Php code roundtrip are the ones having the extension specified in the generation
settings. The tree formed by the sub-directories produce an equivalent tree of sub-packages, on whose the
needed class view and deployment view are made to support the classes and artifacts. When a type is
referenced but not defined in the reverse files, a class having the same name is defined under an additional
package named unknown.

The reverse/roundtrip setting dialog of the modeler allows to specify through regular expression the files and /
or directories whose must not be taken into account during a reverse and roundtrip, for instance to bypass test
programs.

Obviously the Php code roundtrip tries to update existing classes and members, but sometimes it can't
recognize and old member (mainly in case of renaming) deletes it and create a new one. Of course the Php
code roundtrip tries to produce the definitions made in BOUML at the artifact / class / operation / relation /
attribute levels. When it is possible it creates a relation rather than an attribute.

The Php code roundtrip works in four steps, during the first step all the project is upload, in the second step
the elements to roundtrip are prepared, in the third step it scans all the files to establish the list of defined
types, then the last step may roundtrip/reverse the files.

The trace window is used to indicate the steps, the updated classes and possible problems. The trace window is
automatically opened by BOUML, it may also be manually opened through the Tools menu.

When the reverse is done the number of updated and created classes and artifacts are written, then the useless
elements are marked (all previous marks are removed) to allow you to know who they are, and the roundtrip
ask for you to confirm if is delete these elements or not.

See also Php reverse.

Previous : Php reverse

Next : Python Generator

416

Python generator
The Python code generator is a plug-out directly written in C++.

The generated sources follows the definition made in BOUML at the artifact / class / operation / relation /
attribute / extra member levels.

When the code generation is applied on a artifact associated to several classes, the code generation is made for
all these classes. Nevertheless the Python code generator produce first the code in memory and update the
appropriate files only when it is necessary, to not change the last write date of the files for nothing. Depending
on the toggle verbose code generation of the global menu Languages the code generator is verbose or not.

The Python code generator plug-out may be called on :

a class : in this case the code generation is in fact applied on the class's artifact, then on all the classes
associated to this artifact

a artifact : in this case the code generation is in fact applied on all the classes associated to the artifact

a class view : the code generation will be applied on all the sub classes, then on all the artifacts associated
to these classes

a deployment view : the code generation is applied on all the sub artifacts

a package (may be the project itself) : the code generation will be applied on all the sub class views and
deployment views, then on all their sub classes and artifacts.

When the Python code generator is ask through the Tools menu, it is applied on the project, then on all the
artifacts.

The name of the generated files depend on the artifact name, the extension depend on the language and is
fixed for each by the generations settings (see below), the directory where the files are generated may be set in
each package containing directly or indirectly the artifact (see generation directory).

The generator change automatically the indentation, adding/removing when necessary the indentation step
specified through the generations settings (see dialog screen below) At least the first line of an operation's
body must not be indented when you enter it through the operation dialog (except if you ask for non contextual
indent), but of course you have to manage yourself the indentation change due to control statement for
instance.

artifact

The Python definition of a artifact is set through the Python source tabs of the artifact dialog.

The code generation depend on the stereotype of the artifact :

text : the Python definition of the artifact is produced without changes, the name of the generated file is
the name of the artifact, including the extension.

source : see below.

else nothing is generated for the artifact.

The generated file name is the artifact's name with the extension specified in the first Python tab of the
generations settings :

417

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
Python code generator are :

${NAME} produce the artifact name capitalized, ${Name} produce the artifact name with the first letter
capitalized, ${nAME} produce the artifact name forced in lowercase, at least ${name} produce the
artifact name without modification.

${comment} is replaced by the artifact description adding ## at the beginning of each line and a
newline at end, or nothing if the description is empty

${description} is replaced by the artifact description without adding ##

${imports} is replaced by import and from .. import forms from the dependencies between classes and
between artifacts stereotyped import or from. A dependency stereotyped import between artifact
produces an import, stereotyped from this produces a from ... import *. A dependency stereotyped import
between classes produces an import, stereotyped from this produces a form from ... import. Or course the
packages are taken into account. You can also directly add import forms by hand in the artifact definition,
they will be taken into account to not produce useless package path when classe names will be generated.

${definition} is replaced by the definition of the classes and extra artifact definitions associated to the
artifact.

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the artifact, if not found for the deployment view containing the artifact, if not found in
the package containing the deployment view etc ...

Class

Bouml allows to define class for any releases of Python, to help for Python 2.2 classes generation a toggle
Python 2.2 is defined in each class, its default value is set through the generation settings. When Python 2.2 is
set and a class doesn't inherit in the model, the inheritance or object is automatically added.

The Python definition of a class is set through the Uml and Python tabs of the class dialog.

A Python type definition may be a class, or an enum defined through a class, depending on the stereotype and
its translation in Python (see generation settings).

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
Python code generator are :

${docstring} is replaced by the description of the class placed between ””” and followed by a newline. If
the description is empty nothing is produced. By default (set through the generation settings ${docstring}
is used rather than ${comment} or ${description}.

418

${comment} is replaced by the description of the class adding #

${description} is replaced by the class description without adding #

${name} is replaced by the class's name. If needed the package path is produced, the code generator tale
into account the imports associated to the depdencies and the ones writtent by hand directly in the
artifact definition.

${inherit} is replaced by the class inheritance

${members} is replaced by the code generated for all the class's members (relations, attributes,
operations, extra members and nested classes) following the browser order.

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the class, if not found for the container of the class (an other class of a class view) etc ...

In the special case where the class is declared external, its Python type declaration must contains a line
indicating how the name of the class is generated, and followed by an optional line giving the needed import
forms. By default the specification of the name is ${name} meaning that the name is produced unchanged, the
only allowed keywords are ${name}, ${Name} and ${NAME}.

Operation

The Python definition of an operation is set through the Uml and Python tabs of the operation dialog.

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
Python code generator are :

${@} is replaced by the decorators, don't use decorator to produce @staticmethod and @abstractmethod,
see ${static} and ${abstract} bellow

${comment} is replaced by the description of the operation adding # at the beginning of each line and
forcing a newline at the end. Produce nothing when the description is empty.

${description} is replaced by the operation description without adding #. Produce nothing when the
description is empty.

${static} is replaced by @staticmethod followed by a newline if the method is declared static in the UML
tab, else an empty string

${abstract} is replaced by @abstractmethod followed by a newline if the method is declared abstract in
the UML tab, else an empty string

${name} is replaced by the name of the operation.

${class} is replaced by the name of the class containing the operation.

${(} and ${)} produce (and), but there are also a mark for BOUML to find the parameters list

${t<n>}, ${p<n>} and ${v<n>} produce the type, name and default value of each parameter (count
from 0), this allows you to remove a parameter, etc ...

${m<n>} produce the multiplicity of each parameter (count from 0), a priori used in a comment

${type} produces the operation return type, if it is not empty the type generation is preceded by -> (ref.
pep3107)

${multiplicity} is replaced by the multiplicity of the return type (see the UML tab), a priori used in a
comment

${body} is replaced by the body of the operation, this macro may also be replaced by the body itself
(BOUML use this way for the get and set operations associated to a relation/attribute). The usage of
${body} has a great advantage : when you hit Default definition the body is not cleared ! At least
BOUML share the definition forms of the operations (and other objects) to minimize the needed memory
size, ${body} help for this ! The indentation of the keyword ${body} is added at the beginning of each
line. In the special case of the __init__ operation the initialization of the instance attributes and relations is
added just before the body, they are not produced if ${body} is not part of the operation definition.

${association} in case the operation is a getter/setter on a relation produce the association (may be the
class forming a class-association with the relation) set on the relation

419

${type} is replaced by the class pointed by the return type, a priori used in a comment, may be for a form
@return

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the operation, if not found for the class containing the operation etc ...If the toggle
preserve operations's body is set through the Languages menu, the generators do not modify the body of
the operations protected by dedicated delimiters. This means that for them the body definition set through
BOUML is not used. The first time you generate the code with the toggle set, because the delimiters are
not yet present in the generated code, the operation's body will be updated depending on their definition
under BOUML. After, while the toggle is set and the delimiters present, the bodies will not change,
allowing you to modify them out of BOUML.

Notes :

In case the file containing a body definition is not consistent with the artifact under BOUML, the body will
be regenerated by the code generation, using its definition under the model.

When you import a project, the body of the imported operations must be the right one in the imported
model. The preserved bodies of the imported operations will not be find because the identifier of an
operation used to mark its body changes during the import.

The bodies under the model are not updated by the code generation, use roundtrip body for that

Only the operations using the keyword ${body} may have a preserved body.

The only modification you can do in the lines containing the delimiters is the indent.

The toggle is saved in the file associated to the project, be sure the save is done when you change this
toggle !

Attribute

The Python definition of an attribute is set through the Uml and Python tabs of the attribute dialog.

An attribute may be a standard attribute or the item of an enumeration defined through a class.

The static attributes are produced in order directly in the class definition. The instance attributes are produced
at the beginning of the operation __init__ when its definition contains ${body}. The operation __init__ is
automatically added by the code generation, even if they are no instance attribute or relation.

Attribute corresponding to variable

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
Python code generator are :

${comment} is replaced by the description of the attribute adding # at the beginning of each line and
forcing a newline at the end. Produce nothing when the description is empty.

${description} is replaced by the attribute description without adding #. Produce nothing when the
description is empty.

${self} inside the operation __init__ this produces the name of the first parameter followed by a dot, else
nothing.

${name} is replaced by the attribute's name (see the UML tab)

${multiplicity} is replaced by the multiplicity of the attribute, probably used inside a comment

${stereotype} is replaced by the translation in Python of the attribute's stereotype (see the UML tab),
probably something like list

${type} produces the type of the attribute, probably used inside a comment, may be for a form @var

${value} is replaced by the initial value of the attribute (see the UML tab)

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the attribute, if not found for the class containing the attribute etc ...

420

Relation

The Python definition of a relation is set through the Uml and Python tabs of the relation dialog.

The static relations corresponding to variables are produced in order directly in the class definition. The
instance relations corresponding to variables are produced at the beginning of the operation __init__ when its
definition contains ${body}. The operation __init__ is automatically added by the code generation, even if they
are no instance attribute or relation.

Relation corresponding to variable

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
Python code generator are :

${comment} is replaced by the description of the relation adding # at the beginning of each line and
forcing a newline at the end. Produce nothing when the description is empty.

${description} is replaced by the relation description without adding #. Produce nothing when the
description is empty.

${self} inside the operation __init__ this produces the name of the first parameter followed by a dot, else
nothing.

${name} is replaced by the role's name (see the UML tab)

${inverse_name} is replaced by the name of the inverse role (see the UML tab)

${multiplicity} is replaced by the multiplicity of the relation, probably used inside a comment

${stereotype} is replaced by the translation in Python of the relation's stereotype (see the UML tab),
probably something like list

${type} is replaced by the type of the relation, it is used by default when the relation is a composition to
create an instance of this type, can also be used in a comment for a form @var

${value} is replaced by the initial value of the attribute (see the UML tab)

${association} produce the association (may be the class forming a class-association with the relation)

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the attribute, if not found for the class containing the attribute etc ...

Inheritance

The class inheritance are managed at the class level.

${type} is replaced by the name of the inherited class.

An inheritance implicitly produces an import form in the artifact if needed.

Dependencies

The dependencies allows to add import forms in the artifact, refer to ${import} description

Extra member

The Python definition of an extra member is set through the Python tabs of the extra member dialog.

The definition of the extra members are produced without any modification, this means you are also
responsible to the indent

No macros.

Previous : Php roundtrip

Next : Python reverse

421

Python reverse
Warning : this plug-out is not yet available

The Python code reverse is a plug-out directly written in C++.

Note that the Python code reverse cannot be used as a Python code round trip and doesn't allows to update
already defined classes having at least one member.

The Python code reverse plug-out may be applied only on a package.

When you start the Python code reverse, it ask for a directory, then it reads all the sources placed under the
selected directory and sub-directories. The sources read by the Python code reverse are the ones having the
extension specified in the generation settings. The tree formed by the sub-directories produce an equivalent
tree of sub-packages, on whose the needed class view and deployment view are made to support the classes
and artifacts. When a type is referenced but not defined in the reverse files, a class having the same name is
defined under an additional package named unknown.

Obviously the Python code reverse tries to produce the definitions made in BOUML at the artifact / class /
operation / relation / attribute levels. When it is possible it creates a relation rather than an attribute. The
instance attributes and relation are created from the variable initializations made in the reverse operation
__init__. The static attributes and relations are created from the variable initializations made at the toplevel of
the class. An operation is declared static when it has the decorator @staticmethod, is it declared abstract when
it has the decorator @abstractmethod.

The Python code reverse works in two steps, during the first step it scans all the files to establish the list of
defined types, then the second step may reverse the files.

When the Python code reverse has a problem, for instance on a syntax error, it produces a warning in the trace
window. The trace window is automatically opened by BOUML, it may also be manually opened through the
Tools menu.

The reversed files are considered composed in three parts :

a header without class definition

only classes definition, this part start with the first class and stops before the first form which is not a
class. The classes must be at the toplevel level, this means not embedded in a if or other form. This part
produces ${definition} in the definition of the artifact

the rest if the file, this part is placed at the end of the definition of the artifact.

Previous : Python generator

Next : Idl generator

422

Idl generator
The Idl code generator is a plug-out directly written in C++.

The generated sources follows the definition made in BOUML at the artifact / class / operation / relation /
attribute / extra member levels.

When the code generation is applied on a artifact associated to several classes, the code generation is made for
all these classes. Nevertheless the the Idl code generator produce first the code in memory and update the
appropriate files only when it is necessary, to not change the last write date of the files for nothing. Depending
on the toggle verbose code generation of the global menu Languages the code generator is verbose or not.

The Idl code generator plug-out may be called on :

a class : in this case the code generation is in fact applied on the class's artifact, then on all the classes
associated to this artifact

a artifact : in this case the code generation is in fact applied on all the classes associated to the artifact

a class view : the code generation will be applied on all the sub classes, then on all the artifacts associated
to these classes

a deployment view : the code generation is applied on all the sub artifacts

a package (may be the project itself) : the code generation will be applied on all the sub class views and
deployment views, then on all their sub classes and artifacts.

When the Idl code generator is ask through the Tools menu, it is applied on the project, then on all the
artifacts.

The name of the generated files depend on the artifact name, the extension depend on the language and is
fixed for each by the generations settings (see below), the directory where the files are generated may be set in
each package containing directly or indirectly the artifact (see generation directory).

artifact

The Idl definition of a artifact is set through the Idl source tabs of the artifact dialog.

The code generation depend on the stereotype of the artifact :

text : the IDL definition of the artifact is produced without changes, the name of the generated file is the
name of the artifact, including the extension.

source : see below

else nothing is generated for the artifact.

The generated file name is the artifact's name with the extension specified in the first Idl tab of the generations
settings :

423

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the Idl
code generator are :

${NAME} produce the artifact name capitalized, ${Name} produce the artifact name with the first letter
capitalized, at least ${name} produce the artifact name without modification.

${comment} is replaced by the artifact description adding //

${description} is replaced by the artifact description without adding //

${includes} is not yet managed by the Idl generator and produce an empty string.

${module_start} is replaced by the module xx forms, dependent on the module specifications associated
to the BOUML package containing the deployment view where the artifact is defined.

${definition} is replaced by the definition of the classes and extra artifact definitions associated to the
artifact.

${module_end} is replaced by }, dependent on the module specifications associated to the BOUML
package containing the deployment view where the artifact is defined.

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the artifact, if not found for the deployment view containing the artifact, if not found in
the package containing the deployment view etc ...

Class

The Idl definition of a class is set through the Uml and Idl tabs of the class dialog.

A Idl type definition may be a valuetype, an interface, a struct, an union, an enum, an exception or a typedef
defined through a class, depending on the stereotype and its translation in Idl (see generation settings).

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the Idl
code generator are :

${comment} is replaced by the description of the class adding //

${description} is replaced by the class description without adding //

${abstract} only for the valuetypes, produce abstract when the valuetype is abstract

${custom} only for the valuetypes, produce abstract when the valuetype is custom

424

${name} is replaced by the class's name

${inherit} is replaced by the inheritance

${members} is replaced by the code generated for all the class's members (relations, attributes,
operations and extra members) following the browser order.

${switch} only for the unions, is replaced by the union switch type

${items} only for the enums, is replaced by the enum's items definition

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the class, if not found for the container of the class (an other class of a class view) etc ...

Operation

The Idl definition of an operation is set through the Uml and Idl tabs of the operation dialog.

The indentation of the first line of the declaration/definition give the indentation added to the class definition
for all the operation definition.

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the Idl
code generator are :

${comment} is replaced by the description of the operation adding //

${description} is replaced by the operation description without adding //

${oneway} produce oneway when the operation is oneway

${type} is replaced by the value type (see the UML tab)

${multiplicity} is replaced by the multiplicity of the return type (see the UML tab), a priori used in a
comment

${name} is replaced by the name of the operation.

${(} and ${)} produce (and), but there are also a mark for BOUML to find the parameters list

${t<n>} and ${p<n>} produce the type and the name of each parameter (count from 0), this allows you
to remove a parameter, etc ...

${m<n>} produce the multiplicity of each parameter (count from 0), a priori used in a comment

${raise} is replaced by the form raise (...) when at least an exception is defined in the UML tab.

${raisenl} produce a line break when the operation have exception. In case you do not like this notation,
change the generation settings to remove this macro.

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the operation, if not found for the class containing the operation etc ...

Attribute

The Idl definition of an attribute is set through the Uml and Idl tabs of the attribute dialog.

The indentation of the first line of the definition give the indentation added to the class definition for all the
attribute definition.

The definition of an attribute depend on the stereotype of its class.

interface's attribute

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the Idl
code generator are :

${comment} is replaced by the description of the attribute adding //

${description} is replaced by the attribute description without adding //

425

${readonly} produce readonly when the attribute is read only (see the UML tab)

${attribute} produce attribute

${type} is replaced by the type of the attribute (see the UML tab)

${stereotype} is replaced by the translation in Idl of the relation's stereotype (see the UML tab)

${multiplicity} is replaced by the multiplicity of the relation (see the UML tab)

${name} is replaced by the attribute's name (see the UML tab)

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the attribute, if not found for the class containing the attribute etc ...

valuetype's attribute

The macros known by the Idl code generator are :

${comment} is replaced by the description of the item adding //

${description} is replaced by the item description without adding //

${visibility} produce the visibility (see the UML tab)

${type} is replaced by the type of the attribute (see the UML tab)

${stereotype} is replaced by the translation in Idl of the relation's stereotype (see the UML tab)

${multiplicity} is replaced by the multiplicity of the relation (see the UML tab)

${name} is replaced by the attribute's name (see the UML tab)

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the attribute, if not found for the class containing the attribute etc ...

union's attribute

The macros known by the Idl code generator are :

${comment} is replaced by the description of the item adding //

${description} is replaced by the item description without adding //

${readonly} produce readonly when the attribute is read only (see the UML tab)

${case} is replaced by the case associated to the attribute

${type} is replaced by the type of the attribute (see the UML tab)

${stereotype} is replaced by the translation in Idl of the relation's stereotype (see the UML tab)

${multiplicity} is replaced by the multiplicity of the relation (see the UML tab)

${name} is replaced by the attribute's name (see the UML tab)

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the attribute, if not found for the class containing the attribute etc ...

enumeration item

The macros known by the Idl code generator are :

${comment} is replaced by the description of the item adding //

${description} is replaced by the item description without adding //

${name} is replaced by the item's name (see the UML tab)

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the attribute, if not found for the class containing the attribute etc ...

426

constant

The macros known by the Idl code generator are :

${comment} is replaced by the description of the item adding //

${description} is replaced by the item description without adding //

${type} is replaced by the type of the attribute (see the UML tab)

${name} is replaced by the attribute's name (see the UML tab)

${value} is replaced by the initial value of the attribute (see the UML tab)

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the attribute, if not found for the class containing the attribute etc ...

Relation

The Idl definition of a relation is set through the Uml and Idl tabs of the relation dialog.

The indentation of the first line of the definition give the indentation added to the class definition for all the
relation definition.

Relation equivalent to an attribute in an interface

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the Idl
code generator are :

${comment} is replaced by the description of the attribute adding //

${description} is replaced by the relation description without adding //

${readonly} produce readonly when the relation is read only (see the UML tab)

${attribute} produce attribute

${type} is replaced by the name of the class pointed by the relation (see the UML tab)

${name} is replaced by the role's name (see the UML tab)

${inverse_name} is replaced by the name of the inverse role (see the UML tab)

${stereotype} is replaced by the translation in Idl of the relation's stereotype (see the UML tab)

${multiplicity} is replaced by the multiplicity of the relation (see the UML tab)

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the relation, if not found for the class containing the relation etc ...

Relation equivalent to an attribute in a valuetype

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the Idl
code generator are :

${comment} is replaced by the description of the relation adding //

${description} is replaced by the relation description without adding //

${visibility} produce the visibility (see the UML tab)

${type} is replaced by the name of the class pointed by the relation (see the UML tab)

${name} is replaced by the role's name (see the UML tab)

${stereotype} is replaced by the translation in Idl of the relation's stereotype (see the UML tab)

${multiplicity} is replaced by the multiplicity of the relation (see the UML tab)

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if

427

searched first for the relation, if not found for the class containing the relation etc ...

Relation equivalent to an attribute in an union

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the Idl
code generator are :

${comment} is replaced by the description of the relation adding //

${description} is replaced by the relation description without adding //

${readonly} produce readonly when the relation is read only (see the UML tab)

${type} is replaced by the name of the class pointed by the relation (see the UML tab)

${name} is replaced by the role's name (see the UML tab)

${stereotype} is replaced by the translation in Idl of the relation's stereotype (see the UML tab)

${multiplicity} is replaced by the multiplicity of the relation (see the UML tab)

${case} is replaced by the case associated to the relation

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the relation, if not found for the class containing the relation etc ...

Inheritance

The class inheritance are managed at the class level.

Extra member

The Idl definition of an extra member is set through the Idl tabs of the extra member dialog.

No macros.

Previous : Python reverse

Next : MySQL generator

428

MySQL generator
The MySQL code generator is a plug-out directly written in C++.

The generated sources follows the definition made in BOUML at the artifact / class / relation / attribute levels.

When the code generation is applied on a artifact associated to several tables, the code generation is made for
all these tables, more the possible definition of the database. Nevertheless the the MySQL code generator
produce first the code in memory and update the appropriate files only when it is necessary, to not change the
last write date of the files for nothing. Depending on the toggle verbose code generation of the global menu
Languages the code generator is verbose or not.

The MySQL code generator plug-out may be called on :

a class : in this case the code generation is in fact applied on the class's artifact, then on all the classes
associated to this artifact

a artifact : in this case the code generation is in fact applied on all the classes associated to the artifact

a class view : the code generation will be applied on all the sub classes, then on all the artifacts associated
to these classes

a deployment view : the code generation is applied on all the sub artifacts

a package (may be the project itself) : the code generation will be applied on all the sub class views and
deployment views, then on all their sub classes and artifacts.

When the MySQL code generator is ask through the Tools menu, it is applied on the project, then on all the
artifacts.

The name of the generated files depend on the artifact name, the extension depend on the language and is
fixed for each by the generations settings (see below), the directory where the files are generated may be set in
each package containing directly or indirectly the artifact (see generation directory).

artifact

The MySQL definition of a artifact is set through the Php source tabs of the artifact dialog.

The MySQL code generation is only done when the stereotype of the artifact is database

The generated file name is the artifact's name with the extension specified in the MySQL of the generations
settings :

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the Php

429

code generator are :

${NAME} produce the artifact name capitalized, ${Name} produce the artifact name with the first letter
capitalized, ${nAME} produce the artifact name forced in lowercase, at least ${name} produce the
artifact name without modification.

${comment} is replaced by the artifact description adding # at the beginning of each line

${description} is replaced by the artifact description without adding #

${definition} is replaced by the definition of the tables and extra artifact definitions associated to the
artifact.

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the artifact, if not found for the deployment view containing the artifact, if not found in
the package containing the deployment view etc ...

Class

The MySQL definition of a class produce a table, it is set through the Uml, and MySQL tabs of the class dialog.

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the Php
code generator are :

${name} is replaced by the class's name

${definition} is replaced by the code generated for all the class's members (relations, attributes,
operations and extra members) following the browser order.

${comment} is replaced by the description of the class as a string between '' after the keyword
COMMENT quoting the characters if necessary

${description} is replaced by the description of the class as a string between '' after the keyword
COMMENT without looking if it is necessary to quote the characters

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the class, if not found for the container of the class (an other class of a class view) etc ...

Attribute

The MySQL definition of an attribute is set through the Uml and MySQL tabs of the attribute dialog.

An attribute may be a column or a non foreign key.

Column

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
MySQL code generator are :

${name} is replaced by the attribute's name (see the UML tab)

${type} is replaced by the type of the attribute including the size when it is set

${notnull} is replaced by NOT NULL when it is set

${autoincr} is replaced by AUTO_INCREMENT when it is set

${default} is replaced by the initial value of the attribute (see the UML tab) in a string between '' after
the keyword DEFAULT, as usual nothing is generated if the attribute doesn't have a default value

${comment} is replaced by the description of the class as a string between '' after the keyword
COMMENT quoting the characters if necessary

${description} is replaced by the description of the class as a string between '' after the keyword
COMMENT without looking if it is necessary to quote the characters

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the attribute, if not found for the class containing the attribute etc …

430

${stereotype} is replaced by the stereotype (see the UML tab), probably for a documentation purpose

Key

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
MySQL code generator are :

${constraint} is replaced by the constraint

${modifier} adds the optional prefix depending on the kind of the key, allowing to have a simple key or a
primary / unique / fulltext / spacial key

${name} is replaced by the attribute's name (see the UML tab)

${type} is replaced by the specified type of the key (nothing, USING BTREE or USING HASH)

${columns} is replaced by the columns of the key between ()

${ref} produces nothing, it is relevant only for the foreign keys (relation)

${stereotype} is replaced by the stereotype (see the UML tab), probably for a documentation purpose

${comment} is replaced by the description of the class as a string between '' after the keyword
COMMENT quoting the characters if necessary

${description} is replaced by the description of the class as a string between '' after the keyword
COMMENT without looking if it is necessary to quote the characters

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the attribute, if not found for the class containing the attribute etc ...

Relation

The MySQL definition of a relation is set through the Uml and MySQL tabs of the relation dialog. A relation
represents a foreign key.

In BOUML the generated code is obtained by the substitution of macros in a text, the macros known by the
MySQL code generator are :

${constraint} is replaced by the constraint

${modifier} is not managed here, it is relevant only for the non foreign keys (attributes)

${name} is replaced by the attribute's name (see the UML tab)

${type} is not managed here, it is relevant only for the non foreign keys (attribute)

${columns} is replaced by the columns of the key

${ref} is replaced by the keyword REFERENCES then the columns associated to the referenced key
between (), then if specified the stereotype after the keyword MATCH, then by the optional delete /
update actions

${comment} is replaced by the description of the class as a string between '' after the keyword
COMMENT quoting the characters if necessary

${description} is replaced by the description of the class as a string between '' after the keyword
COMMENT without looking if it is necessary to quote the characters

@{xyz} is replaced by the user property value in case xyz is the key of this property. The property if
searched first for the attribute, if not found for the class containing the attribute etc ...

Previous : Idl generator

Next : MySQL reverse

431

MySQL reverse
The MySQL code reverse is a plug-out directly written in C++.

Note that the MySQL code reverse cannot be used as a MySQL code round trip and doesn't allows to update
already defined classes having at least one member.

The MySQL code reverse plug-out may be applied only on a package.

When you start the MySQL code reverse, it ask for a for a list of files to reverse, the reverse doesn't connect to
a MySQL server.

The reversed files must define tables of the same database. The reversed files may also define the database, in
this case the created artifact associated to the reversed tables also define the database, else the artifact only
define the tables (you are able to edit it later to also define the database). The reverse considers only create
database, create schema and create table forms, the other forms are bypassed. If needed the keys are renamed
to respect the unicity of the attribute and relation role's names.

Obviously the MySQL code reverse tries to produce the definitions made in BOUML at the artifact / class /
relation / attribute levels.

When the MySQL code reverse has a problem, for instance on a syntax error, it produces a warning in the trace
window. The trace window is automatically opened by BOUML, it may also be manually opened through the
Tools menu.

When the reverse is done, the number of reversed classes, operations, attributes and relations is written, for
instance in case I reverse a backup of the PhpBB forum of BOUML (http://www.bouml.fr/phpbb/) :

Previous : MySQL generator

Next : Roundtrip body

432

Roundtrip body
This is a plug-out directly written in C++.

When you set preserve operations's body through the languages menu, you edit the operation's bodies out of
Bouml, and this one doesn't contains up to date operation's bodies (except for operations setting force body
generation). This plug-out updates the operation's bodies in Bouml from the sources.

Roundtrip body works on the artifact, not at class level. So, when you ask for roundtrip body on an artifact (or
an upper level), all the operations of all the classes having the mark in the sources associated to the artifact
will be roundtripped.

You can ask for roundtrip body at package, deployment view or artifact level, except in this last case, the
roundtrip is done recursively.

Previous : MySQL reverse

Next : State machine generator

433

State machine generator
The state machine generator create or update the classes implementing a behavioral state machine on which it
is applied.

Currently the state machine generator only generates C++ definitions.

When you apply this plug-out on a state machine, a class having the same name (removing non legal
characters) is created (or updated in case it already exist) in the same class view to implement it. This class
doesn't contain static attributes and may have several instances. Each sub-state is managed through an own
sub-class, the tree of the states and the associated classes is the same. For each trigger, whatever the state
waiting for it, an operation having the same name (the C++ trigger must have a legal C++ name, the C++
guards must be legal C++ forms etc ...) is defined. Currently the triggers can't have parameters, and a
transition can't have several triggers. You must apply these operations on the instance of the class
implementing the state machine to simulate the event, the returned value is true until the final state is
reached. The operation starting the execution is named create (the only legal trigger for a transition from an
initial pseudo state). The operation doActivity() allows to explicitly execute out of a transition the do activity of
the current state if it is not empty. A trigger's name can't start by the character '_', allowing me to produce
operations and attributes starting by '_' without collision.

For instance, in case you apply the state machine generator on the following state machine :

you will obtain these definitions :

434

Having an instance of ReadAmount, you must first call create to execute the initial transition, then you may call
otherAmount etc ...

When you modify the state machine then you recall this plug-out, the classes are updated. The classes,
operations and attributes produced by a previous state machine definition but now useless are deleted.
Warning : if a state or other elements is renamed or was moved to have a new parent, the corresponding class
or class member is deleted and a new one is created. If you add classes or class members, these ones will not
be deleted while their container is not itself deleted, and if they don't have a user property named STM
generated (so, don't duplicate elements created by the state machine generator to not have this property or
remove it after).

Some parts of the generated source code are instrumented to produce a debug message using the function
puts of stdio. The instrumentation is always a form :

#ifdef VERBOSE_STATE_MACHINE

puts(“<the message>”);

#endif

To activate these traces you must compile the code defining VERBOSE_STATE_MACHINE.

Previous : Roundtrip body

Next : XMI generator

435

XMI generator
As it is signified by their name, the XMI generators generates the definition of the project using XMI.

They are two generators, one producing XMI 1.2 the other XMI 2.x (from 2.0 up to 2.3)

XMI 1.2 generator

To be compatible with existing tools, the used format is xml 1.0, xmi 1.2 for UML 1.4.

This plug-out must applied on the project itself, it asks you to specify where the xmi file must be generated and
if you want to produce the UML, C++ or Java definitions :

Currently only the UML definition of the packages, views (generated as package or not generated depending
on the toggle above), classes, attributes, relations, operations, use cases, components (without UML2.0
features) and nodes are saved in the produced file. Classes defined under a use case or a use case view are
generated as actor, their operations, attributes and relations are not generated except dependencies and
generalizations.

The XMI generator manages the following options (in order) :

-uml or -c++ or -java to specify the target language, mandatory if other arguments are given (except the
port number given by Bouml itself)

generated XMI file path (must not contains space)

encoding, for instance windows-1252

-view, optional, to generate views as package

-simpleTv to generate tagged values with the simple form, -complexTv to generate tagged values with the
complex form, else the tagged values are not generated

In case these arguments are given the dialog doesn't appears, this allows to export a project in XMI without
any manual action.

These options may be set through the Tool setting dialog, or when you ask to start a plug-out when Bouml is
lauched (see here).

XMI 2.x generator

The used format is xml 1.0, xmi 2.0 for UML 2.0 or xmi 2.1 for UML 2.1 up to 2.3

This plug-out must applied on the project itself, it asks you to specify where the xmi file must be generated and
if you want to produce the UML, C++ or Java definitions following some options :

436

The XMI generator manages the following options (in order) :

-uml or -c++ or -java to specify the target language, mandatory if other arguments are given (except the
port number given by Bouml itself)

generated XMI file path (must not contains space)

encoding, for instance UTF-8

-nomodel, optional, to not generate the model level

-view, optional, to generate views as package

-uml2.0, optional, to generate for UML 2.0

-uml2.1, optional, to generate for UML 2.1

-uml2.2, optional, to generate for UML 2.2

-uml2.3, optional, to generate for UML 2.3, this is the default

-pk, optional, to prefix the parameter direction by pk_

-vis, optional, to prefix the visibility by vis_

-primitiveType, optional, to define primitive and derived types (like int *) through a primitive type rather
than a data type

-extension, optional, to ask the generator to produce or not through an extension the stereotypes and user
properties (tagged value)

-eclipse, optional, to generate aggregation on the other relation side (needed to import properly under
Eclipse)

-commentexporter, optional, to oomment exporter indication (needed to import in some tools like Rsa)

-lf, optional, to produce the characters line feed and carriage return without modification, else there are
replaced by
 and 

In case these arguments are given the dialog doesn't appears, this allows to export a project in XMI without
any manual action.

These options may be set through the Tool setting dialog, or when you ask to start a plug-out when Bouml is
lauched (see here).

437

Previous : State machine generator

Next : XMI import

438

XMI import
The XMI import allows to import XMI 2.0 for UML 2.0 or XMI 2.1 for UML 2.1 up to 2.3 file. Bypassing
comments and ?xml the first element in the imported file must be xmi:xmi or uml:model or uml:profile else
nothing is imported

This plug-out must be applied on the project itself or a package, it asks for a file and import it, at end the
number of main imported elements is written.

This release doesn't look at the language indications, and only define elements at UML level.

Previous : XMI generator

Next : UML projection

439

UML projection
This plug-out projects the UML elements in the desired language, setting the definitions/declarations to their
default value according to the generation settings like when you use the button default declaration/definition in
a dialog.

This plug-out can be applied on the project, a package, a class view, a class, an operation, an attribute or a
relation and works recursively in case you ask for.

To not project classes stereotyped stereotype nor metaclass nor placed under a package stereotyped profile.

When you launch it the following dialog appears :

Ask to also project the sub elements if desired, then hit the button corresponding to the desired language
projection.

Previous : XMI import

Next : Html documentation generator

440

HTML documentation generator
The HTML documentation generator is developed using BOUML and is an example of a program implemented
simultaneously in C++ and Java.

As it is signified by its name, the HTML documentation generator generates HTML pages describing the object
on which it is applied and its sub objects, with some indexes. When the generator is started some dialogs
appear to configure the result, you may also set them using the options, see below

The diagrams are produced in the generated page(s), the used scale and picture size are the default ones
except when there are set (for instance see use case diagram).

The HTML code generator manages the following options (in order) :

-flat, optional, to produce the class definitions in index.html rather than in separate files.

-svg, optional, to produce SVG images rather than PNG ones.

-utf8 or (exclusive) -latin1, optional, to specify the encoding. These options aren't managed by the Java
version of the Html generator.

-tag, optional, when this option is not set (this is the default) the descriptions are generated protecting
special characters like <, this means a < in a description generates <

-tag_all, optional and exclusive with -tag. It is similar to the option -tag but applies to any part rather than
just the descriptions. When the options -tag and -tag_all aren't used you can explicitly ask for to not
protect sequences of characters placing them between <html> and </html>.

generated Html files directory (must not contains space) mandatory if the next arguments are given
(except the port number given by Bouml itself)

-del_html, optional, to remove already existing HTML files in the specified directory

-del_css, optional, to replace the file style.css if it already exists in the specified directory, do not use this
option if you have your own styles. Of course in all the cases style.css is created if it doesn't exist

In case the generated files directory is specified the dialogs don't appears, this allows to generate the HTML
documentation without any manual action.

These options may be set through the Tool setting dialog, or when you ask to start a plug-out when Bouml is
lauched (see here).

Previous : XMI import

Next : genpro

441

Genpro : .pro generator
genpro is an other example of plug-out developed with BOUML, its goal is to generate the .pro file used by
qmake or tmake to produce the Makefile of a C++ program using Qt ... for instance a plug-out.

genpro has itself a graphical interface implemented thanks to Qt, when it is applied on a artifact stereotyped
executable the following window appears (here it is applied on the html executable artifact, the C++
generation directory is /tmp/html/cpp) :

By default the .pro file is produced in the directory where the executable is made, the executable's name is the
artifact's name except when this least is 'executable', in this case is is the project's name. You may specify the
template (app, lib or subdirs), set some flags like debug, the C++ pre-processor variable definitions (see plug-
out for explanations on WITHCPP WITHJAVA WITHIDL WITHPHP WITHPYTHON and WITHMYSQL), ask to
place the objects in a directory which is not the one used for the sources etc ...

The source files considered by genpro are the ones produced by the source artifacts associated to the
executable artifact on which genpro is applied.

The same technique may be used to directly generate a Makefile for a C++ or Java program.

Previous : Html documentation generator

Next : Rose project import

442

Rose project import
This plug-out is developed using BOUML in C++. As it is signified by its name, this one import a Rose model
from its .mdl (and associated files) into BOUML in the package/project where it is launch.

This plug-out is under development, actually the imported diagrams are created empty, the BOUML's API
doesn't yet allows to modify them. Actually the reverse C++ doesn't allows to complete the imported model
with the files generated by Rose.

BOUML manages the case of the controlled packages through a .cat or a .sub files find through a $variable
rather than a fixed path. When a variable is not an environment variable, BOUML ask for its value (only one
time, or course).

BOUML write a message into the tool window each time it cannot import something.

Previous : genpro

Next : Plug-out upgrade

443

Plug-out Upgrade
When new features are introduced in BOUML these ones are not managed by your (now old) plus-outs, to
automatically upgrade them, the distribution of BOUML contains the upgrade plug-out.

Its goal is to upgrade the plug-outs not made from the last up to date version of the plug-out empty, adding the
missing features.

It is applied through the entry plug-out upgrade of the menu Tools (this entry doesn't appears while a dialog is
opened or when the project is not a plug-out) :

When it is applied, the plug-out ask you for a confirmation, thus it adds the needed classes etc ... When all is
done a new dialog appears for information and a save-as is called asking you to save your plug-out in a new
location, thus in all the cases the project is closed.

Previous : Rose import

Next : C++ utilities

444

C++ Utilities
Some utilities concerning C++.

When it is applied to a class, it allows to add specific operations not yet defined :

The content of the dialog depend on the already defined operations.

Previous : Plug-out upgrade

Next : Use case wizard

445

Use case wizard
A very simple plug-out defined in C++ and Java both (like the HTML code generator) to extend use case
features.

When it is applied to a use case, it allows to specify through text a summary, context, pre-conditions,
description, port-conditions and exception :

Don't hesitate to modify this plug-out (saving it output of the Bouml installation directory to not loose your
modifications on a future Bouml installation) for your own purposes !

Previous : C++ utilities

Next : File control

446

File control
A very simple plug-out defined in C++ to control the project files with CVS, Subversion, Clear Case or other file
controller, doing the check in / out on the appropriate files.

This plug-out asks for the command to be made on each file. The command is executed through the function
system, don't forget to give the option -nc for Clear Case. Of course in case you don't use a file control you may
use this plug-out to set the file permissions using chmod in the commands under Linux etc ...

The first parameter of the plug-out must be ci or co to know what must be done, this means that the plug-out is
configured two times, for instance like this :

When it is applied to a the project or an other package it ask you for the command (proposing the last used
one) :

When you just want to change the write permissions using chmod under Linux, the check in command is chmod
-w %dir/%file and the check out command is chmod +w %dir/%file

Note : the file permissions are set when a project is read, you must re-read a project to force Bouml to know
the new ones.

Previous : C++ utilities

Next : Deploy classes

447

Deploy classes
A very simple plug-out defined in C++ and Java both (like the HTML code generator) to automatize the
creation of the artifact for all the classes of the class view on which the plug-out is applied :

If the class view doesn't have an associated deployment view, an associated deployment view having the
name of the class view is created in the same package.

An artifact with the stereotype source is created and associated to all the classes of the class view without
associated artifact and deployed for at least one language, the name of the artifact is the name of the
class.

A class is deployed for a given language only when it is non external and has a non empty definition.
Classes stereotyped stereotype or metaclass are not deployed.

Previous : File control

Next : global change

448

Global change
This plug-out defined in C++ allows to do global modification of the artifact, classes, operations, attributes and
relations definitions, working recursively from the browser element on which it is applied.

When you change default definitions or declarations in the generation settings, these changes are not
propagated in the already existing elements to not broke them. This plug-out allows you to apply these changes
if needed on a controlled way.

This plug-out may be applied on a package (including the project itself), class view, deployment view or a class,
and works through this dialog :

The filters are optional are allow to not do the change on all the potential definitions and declarations. An
empty filter is ignored, else a filter may be used to consider the forms containing it (with is set) or not
containing it (without is set). When you have several filters you may conjugate them with and or or, the priority
of and and or are the standard ones (like in C++ Java Php or Python). In case you have one filter, you must use
filter 1. In case you have two filters you must use filter 1 and 2.

It is also possible to filter through the stereotype. Choose any to not consider the stereotypes, is to consider
only the elements having the specified stereotype (may be an empty one), and is not to not consider the
elements having the specified stereotype (may be an empty one).

Several targets may be set, to choose on which kind of elements the change must be done.

Several languages may be set too, to choose for which language the definition / declarations the changes must
be done.

Current indicates the current form to be changed, new the value, the substitution being done on the element
definitions / declarations compatible with all the previous indications.

Notes : except for the stereotype where there are not available, a \n is used to indicate a line break and a \t
indicates a tab in the inputs. At most one replacement is done by form.

Examples of use :

you want to replace everywhere ${comment} by ${description} : all the filters must be empty, set any,
artifact, class, operation, attribute and relation, set the right languages, set current to ${comment} and
$new to ${description}, press Replace.

In the old releases, the operation body indent must be set inside the body because the form ${body} was
not preceded by two spaces, to replace the old definitions by the new default one where ${body} is placed
after two spaces, and to keep the definition having these to spaces unchanged : the first filter must be set

449

to <space><space>${body} (where <space> is a space character !) and you set without, the other filters
are empty, set operation only, set the right languages, set current to ${body} and $new to <space>
<space>${body} (where <space> is a space character !), press Replace.

When you ask for a replacement, a dialog indicate how many changes was done, and may be how many can't be
done because it is not possible to set the definition / declaration of a read only element.

Warning, global changes may have dramatic consequences when the filtering is not sufficient,because you can't
undo them it is a good idea to save the project before changes !

Previous : Deploy classes

Next : plug-outs

450

Plug-outs

Plug-outs are external programs written in C++ or Java which interact with BOUML via a network socket.
These programs may be written using BOUML itself. The previous chapters describe some plug-out including
the code generators and code reverse.

A plug-out is a very practical way to automate treatment on the model; do not hesitate to write one. I just
recommend you to save your model before executing your plug-outs when you debug them :-) !

Applying a plug-out

If you right-click on any item in the browser tree, you will see a pop-up menu. Select the Tool item and you will
see a list of all the plug-outs which can operate on the item you right-clicked.

Additionally, if a plug-out is able to operate at project level (see the Prj column described below), then the plug-
out's description will also appear in the Tool menu in the menu-bar at the top of the BOUML window.

Declaring a plug-out

To be executed, a plug-out must be declared through the tool dialog called when you select the tools settings
entry of the tools menu :

The first column specify how the plug-out is executed, for a C++ program you just have to give its name and
may be the path depending on your environment, in Java the -cp option allows to specify the path and the
starting class is Main (except if you change the definition of the executable artifact !).

The content of the second column will be displayed in the menu when your plug-out is applicable on the target
item.

The other columns allows to specify the kind of the items on whose the plug-out is applicable. The icon in each
column header corresponds to all instances of that icon in the browser view (see the browser items page for a
summary of the meaning of all icons). If a column in a plug-out row is checked, it means that you can right-click
an instance of that icon in the browser view, select the Tool item at the bottom of the pop-up menu, and then
initiate the plug-out's operation on the instance you right-clicked.

For instance, in the screenshot above, the row for the gpro executable contains a single X in the column
corresponding to the artifact icon. This means that you can right-click any artifact in the browser tree, select
Tool then Generate .pro to generate the corresponding .pro file.

As usual the last column do allows to copy/past/cut/insert line and applies on the line where you did the mouse
click.

Note that the declaration of the plug-out is saved in the file named tools, this allows you to quickly set the tools
list after creating a new project copying the tools file of an old project (this file is read when you load the
project).

Creating a new plug-out

The distribution of BOUML contains a project named empty, this one is a plug-out doing nothing for you point
of view, in fact it implements in C++ and Java the API allowing to interact with BOUML. To develop a new plug-

451

out open the empty project, BOUML will ask you to save it in an other project to keep empty unmodified. You
may also develop a plug-out from one of the others available plug-outs, you just have to know that these ones
was developed at different step of the BOUML definition, then they do not contain all the BOUML API and
some operations may not be defined. By definition, empty contains all the API.

The empty plug-out contains several already defined classes with their associated artifact, half of them are
placed under the package API BASE and implement the API with BOUML, you cannot modify them, they define
the system part of a plus-out. The other half is yours, each of these user classes inherits to a system class, and
sometimes a system class inherits of a user class, for instance the classes associated to ... the classes are:

In this diagram the blue classes are the system classes, the other classes are yours. UmlItem is the user class
inherited by almost all the other classes.

The disadvantage of this choice in C++ is to recompile many files when a base class is modified, but this allows
to define (virtual) operations managing several classes.

I do not describe in this documentation all the predefined classes and their operations, the better is to look at
the model of a newly created plug-out or to generate the html pages describing it (this is done under the
empty_html directory, the html entry page is index-withframe.html). I also recommend you to look at the plug-
outs given with the BOUML distribution. Nevertheless you have to know :

the entry point of a plug-out in C++ and Java is placed in the artifact named Main under USER API, refer
to it

in C++ :

if the C++ pre-processor variables WITHCPP, WITHJAVA, WITHPHP, WITHPYTHON, WITHMYSQL
and WITHIDL are defined (using #define or -D option of the G++ compiler, etc ...) you will get all the
informations from BOUML.

if the C++ pre-processor variables WITHCPP, WITHJAVA, WITHPHP, WITHPYTHON WITHMYSQL and
WITHIDL are not defined you will access only to UML data, this means for instance that the
operations cppDecl javaDecl phpDecl and idlDecl will not be defined for UmlBaseClassItem, this limits
the amount of data managed by a plug-out and reduce the execution time and used memory space

if only WITHCPP is defined you will access only to UML and C++ data, this means for instance that
the operations javaDecl phpDecl mysqlDecl and idlDecl will not be defined for UmlBaseClassItem, this
limits the amount of data managed by a plug-out and reduce the execution time and used memory
space

if only WITHJAVA is defined you will access only to UML and Java data, this means for instance that
the operations cppDecl phpDecl mysqlDecl and idlDecl will not be defined for UmlBaseClassItem, this
limits the amount of data managed by a plug-out and reduce the execution time and used memory
space

if only WITHPHP is defined you will access only to UML and Php data, this means for instance that the
operations cppDecl javaDecl mysqlDecl and idlDecl will not be defined for UmlBaseClassItem, this
limits the amount of data managed by a plug-out and reduce the execution time and used memory
space

if only WITHPYTHON is defined you will access only to UML and Python data, this means for instance

452

that the operations cppDecl javaDecl mysqlDecl and idlDecl will not be defined for UmlBaseClassItem,
this limits the amount of data managed by a plug-out and reduce the execution time and used memory
space

if only WITHIDL is defined you will access only to UML and IDL data, this means for instance that the
operations cppDecl javaDecl mysqlDecl and phpDecl will not be defined for UmlBaseClassItem, this
limits the amount of data managed by a plug-out and reduce the execution time and used memory
space

if only WITHMYSQL is defined you will access only to UML and MySQL data, this means for instance
that the operations cppDecl javaDecl IdlDecl PythonDecl and phpDecl will not be defined for
UmlBaseClassItem, this limits the amount of data managed by a plug-out and reduce the execution
time and used memory space

the other combinations where only two of these three pre-processor variables are defined are illegal.

Updating a plug-out

See upgrade plug-out.

To start a plug-out when Bouml is launch

It is possible to apply a plug-out on the project when Bouml is started through your shell or command line :
bouml <project file> -exec <plug out> <plug out options> -exit

To not see the graphical interface replace -exec by -execnogui. Warning, under Windows the export of the
diagrams doesn't work correctly with the option -execnogui.

<project file> indicates the model to load as usual.

<plug out> indicates the plug-out to apply on the project. The C++ generator is named cpp_generator,
the Java generator java_generator, the Php generator php_generator, the Idl generator idl_generator, the
HTML generator ghtml, the XMI generator gxmi and gxmi2. If necessary the full path of the plug-out have
to be done, warning : under Windows this path must not contain space.

<plug out options> are the optional options you give to the plug out

-exit is optional and allows to exit from Bouml when the plug-out execution is done.

For instance (HTML generator options are given here, XMI generator options are given here) :

to start the xmi generator under Windows : "C:\Program Files\Bouml\bouml" "D:\...\aze\aze.prj" -exec
C:\Progra~1\Bouml\gxmi -uml c:\aze.xmi windows-1252 -exit

to start the Html generator under Linux : bouml .../qsd/qsd.prj -exec /usr/lib/bouml/ghtml -flat -latin1
/tmp/qsd_html -del_html -del_css -exit

Exchanges with BOUML

453

The exchanges between BOUML and the plug-outs are supported by a TCP/IP socket. When you ask BOUML to
start a plug-out, it search for a free port number starting at 1024. In case you have a firewall it may be
necessary to configure it.

To reduce the number of exchanges with BOUML and run faster, a plug-out does not ask for BOUML each time
you want to get a value. The system classes read and memorize all the data of a given item the first time you
access to one of them (with the restrictions allowed by WITHCPP, WITHJAVA, WITHPHP, WITHPYTHON,
WITHMYSQL and WITHIDL). This is transparent for you until two plug-outs access to the same data, when one
plug-out modify a value already read by the other, the second plug-out does not see the new value until it
unload (an operation defined on UmlBaseItem) the object, then ask for the value.

User properties

A user property is a couple key – value, the value may be empty.

By default the user properties are not used, nevertheless they exist! It is the only way to add information
concerning any item (without modifying BOUML !), and obviously they are accessible in the plug-outs. The
alone limitation is that the keys and the values must contain string, may be on several lines ... even the editor
called by the dialogs is not a multi-lines editor !

The plug-out genpro use the properties of the artifact on which it is applied to save its data and give them is a
future usage (supposing the project saved !).

To see/modify them, select the last tab named User present in the dialog of any kind of item.

Compile a Java plug-out

To compile the java files, go in the directory where the files are and do javac *.java (don't compile file by file
because some files associated to the API contain several classes).

Compile a C++ plug-out

The easy way under Windows, Linux and MacOS X is to use QtCreator, to know which version of Qt is used to
compile Bouml execute it then ask for About Qt in the global menu Help.

Previous : Use case wizard

Next : Project control

454

Project control
This tool manages an applicative write access to the project files without using the may be existing operating
system capabilities. The goal is to give the write access of a the project files to at most one user per file, to
avoid to merge modifications made by several users. The tool Project synchro associated to project control
allows you to synchronize a repository project with the modifications made by several users (supposing each
package modified by at most one user).

Because of the way the project data are saved by BOUML (see project files), the write access are managed at
package level, and each information attached to a package (except its sub packages) have the write access of
this package. Recall the generation settings, default stereotypes etc are associated to the project package, a
good way is to not define views directly in the project package but to immediately create sub packages, each
one owned by a different user or protected.

Project Control is not a plug-out, it is launch like BOUML or any tool, when you start it the following window
appears :

To avoid inconsistencies, you can't apply Project Control several times on a given project, and you can't use it
on a project while it is edited by BOUML or by Project Synchro, if this is the case a message warns you :

The write access are written inside the project files associated to the packages, if all the users access to the
same shared image of the project, the protection will be taken into account by BOUML. If there are several
images of the project, after the use of File Control each image must be updated, or you must set the same write
access using the tool by yourself.

All the operations are presented to be done for a given user, this user is indicated at the bottom of the window.
Obviously the user is first the one starting the tool, the id is the value of the user own identifier set through the
environment dialog.

Project menu

455

This menu allows

to load project (may be through the historic list proposed at the bottom, this historic is the one of BOUML
for the user starting Project Control),

to change the current user,

to search for a package from its name,

or to quit the tool.

Browser

When you load a project, only the packages are shown in the browser, for example on the project doing the
HTML generation, if the project package is protected, the API USER owned by bruno and Aux by olivier :

The icon used to represent a package indicates the write access :

 : the package is not protected and may be modified by any user using BOUML

 : the package is protected, no users may modify it using BOUML

 : the package is own by the current user, only the current user can modify it using BOUML

 : the package is own by an other user (indicated by the columns Owner id, Owner name), only this user
can modify it using BOUML

 : the package is not protected and its associated file is read-only, you can't modify the write access

 : the package is protected and its associated file is read-only, you can't modify the write access

 : the package is own by the current user and its associated file is read-only, you can't modify the write
access

 : the package is own by an other user and its associated file is read-only, you can't modify the write
access

Package menu

A menu appears when you do a right mouse click on a package, its content depend on the package access, the
entries are (Ctrl is replaced by Apple under MacOS X) :

Protect this package (Ctrl+p) :to protect the current package, no user will be able to modify it using
BOUML

Unassign this package (Ctrl+u) : to not protect the current package, all the users will ne able to modify it
using BOUML

456

Assign this package to <user> (Ctrl+a) : to protect the current package except for the current user

Protect <user>'s packages recursively from this one : to protect the packages own by the current user
from the current package and going down recursively, the state of the packages not own by the current
user is unchanged

Protect unassigned packages recursively from this one : to protect all the unprotected packages from the
current and going down recursively, the state of the other packages is unchanged

Protect all packages recursively from this one (Alt+p) : to protect all the packages from the current and
going down recursively

Assign to <user> unassigned packages recursively from this one : to protect except for the current user
all the unprotected packages from the current and going down recursively, the state of the other packages
is unchanged

Assign to <user> all packages recursively from this one (Alt+a) : to protect except for the current user all
the packages from the current and going down recursively

Unassign <user>'s packages recursively from this one : to not protect the packages own by the current
user from the current package and going down recursively, the state of the other packages is unchanged

Unassign all packages recursively from this one (Alt+u) : to not protect the packages from the current
package and going down recursively

Warning : the change is immediately made, and these is no undo !

Change the current user

To change the current user, use the button representing an actor or the entry in the project menu, a dialog
appears :

Choose a user from the list, set the name through the line editor when it is unknown for the selected user
identifier .

Previous : Plug-out

Next : Project synchro

457

Project synchronization
This tool synchronize several images of a project developed in parallel by several users. The synchronization is
made by replacing old files by new ones. Note that the files are copied, not merged.

To use Project synchro several conditions must be followed, else the synchronization may broke you projects :

To detect a file must be replaced by a new one, the tool uses the revision, not the date when the file was
saved the last time. Because the revision is used, it is not possible to use the tool to synchronize projects
modified by the releases of BOUML strictly less than 2.21 . If you already have several images of a project,
you must first resynchronize them by yourself to obtain a unique image.

Each user has his own copy of the project and works only on this copy. Obviously each user has his own
identifier.

A given project file must be modified by only one user, for instance thanks to Project Control. This means
that when the owner of a file change, you must perform a synchronization before (obviously it is useless to
do a synchronization when a file without owner since the last synchronization become owned by someone).

The synchronization is not possible for an image having a read-only file.

Project Synchro is not a plug-out, it is launch like BOUML or any tool, when you start it the following window
appears :

The menu Project is used to load several images of the same project, to synchronize them or a part of them. it
is also possible to start the tool given a list of project images in parameter.

To avoid inconsistencies, you can't apply Project Synchro several times on a given project, and you can't use it
on a project while it is edited by BOUML or by Project Control, if this is the case a message warns you :

A project directory must also not contain bak files, these temporary files are present when BOUML or File
Synchro crash during the modification of the files :

When only one project image is load the aspect is the following :

458

When you load a second project image, the color of the icons representing each package indicates if this one
must be updated or not :

A package is green when it is up to date in all the images. It is orange when it must be updated, this means
that an other image has a new version of this package, and this new version is blue. A new package is also in
blue. At least a deleted package is gray. In the previous picture package5 is blue because it is new (it doesn't
exist in /home/bruno/uml/pr) and package1 is blue on the right because it was modified to add the sub-package
package5.

Each time a new image of the project is load, the colors are computed (obviously it is not possible to load
several times the same project image) :

459

As you can see incl is gray indicating it was deleted, and the project itself was modified, at least to remove incl.

On the bottom of each image you have the number packages whose need to be updated or deleted. The
indication RO means that at least one file of the project image is read-only, in this case the image can't be
synchronized, even if the file correspond to an up to date package.

When enough images was load, you can ask for the synchronization through the menu Project or the shortcut
control-S. A dialog appears :

As you can see only two of the three images may be synchronized because of read only files in the second
image. However the second image will be used during the synchronization to get the new version of package1
and the new package package5.

After selecting at least one image and hitting on synchronize the synchronization the selected images are
updated, then a dialog indicating the end of the synchronization appears :

When you confirm the execution of Project Synchro is done. Supposing the synchronization done for the first
and third image, restarting Project Synchro this the same images, one obtains :

460

Obviously the first and third images have the same aspect and don't contain old packages.

As I said it is possible to start the tool giving the project images in parameter, for instance under Linux :

projectControl ~bruno/uml/pr/pr.prj /tmp/pr/pr.prj ~bruno/pr/pr.prj

Previous : Project control

Next : Multi user considerations

461

Multi users considerations
BOUML attributes an identifier to the main objects to resolve the references to the not already read objects
when you load a project. This identifier is establish during the object creation and will not change later (except
if you import a project into an other one), to allow several users to work simultaneously on the same project,
this object identifier contains the identifier of the user creating the object. This explains why BOUML ask you
to have an own identifier between 2 and 127.

These identifiers are also used to name the files memorizing a project, refer to Project files. The plug-out API
define the UmlBaseItem::supportFile to know whose file(s) support a given item.

Notes : When it loads a project, BOUML checks the write permission of the file done through the OS or the
applicative permission indicated inside the file. In the browser the writable objects are written in bold. When
you load a project, this one must be consistent, else the references to the unknown items are removed and
these unknown items are considered deleted.

When you are several working on the same project you have to choose between two ways :

To share the same project files

In this case all the users work on the same project files, this means that no one has a copy of the project files.
This is possible because when you do a save only the modified files are written. However this suppose at most
one user may modify a given project file, else modifications made by several will quickly be done.

There are two way to allow at most one user to modify a file : to use the write permission set using your OS
(difficult under Windows) with the help of File Control, or to use Project Control.

File Control

File control is a plug-out mainly dedicated to be an interface between BOUML and a file control like Clearcase,
CVS or Subversion etc ..., however to use a file control may affect the write permission of the files.

Project control

Project control is a tool managing an applicative write permission optionally memorized in the project files
associated to the packages. This allows to set the write permission independently of the OS you use.

To use project images

In this case each user has an own copy of the project, and sometimes all the modifications done in parallel are
grouped. You may adopt two strategies : to allows any user to modify any part of the project, in this case you
will have to merge the modifications by yourself, or to allow only one user to modify a given project file.

Even the Project files are Ascii files, I may be difficult to merge several version of the same file, I know several
companies use this way, but it is possible to not have to merge the modifications using the write protection
through File control or Project control and to resynchronize the model using Project Synchro.

To work without merge

Let's suppose Bruno, Olivier and Annie work on the same project and decide to use Project Control and Project
Synchro.

At the beginning an unique image of the project exist. If the project already exists, using Project Control you
give the write access of the package to at most one person. If you start from scratch with an empty project,
immediately create at least a sub-package for each, this may be changed later. Because the project itself is
used to memorize generation settings and other global information, I propose you to decide immediately what
are the settings and to protect the package supporting the project, this means it is not owned by Bruno, Olivier
or Annie.

When the write accesses are set, duplicate the project files (in fact the directory of the project) to have three
images, and perhaps a fourth image placed under a file controller. Bruno, Olivier and Annie work each on its
private image and don't change the write accesses, except to loose the write access, or to get the write access
to a protected package(s) not own by the others since the last synchronization.

Sometimes, for instance because Annie define a class used by Olivier, you have to synchronize the parallel
developments. In this case using File Synchro, Annie Olivier and may be Bruno get the modifications done by
the others. When the project is synchronized it is also possible to change the write access from a user to an

462

other one, obviously this must be made on all the images, or on one image and copying it in the others.

Obviously like in any development, when an element is removed from the model by Bruno, for instance a class,
he has to ask for Olivier and Annie except if this element was not yet delivered to them. To move an element
inside the browser is not a problem, an element is referenced through an internal key, not through its location.
In a similar way an element may be renamed because the key doesn't contains the name, but this may have
impact in the body of the operations where the renaming is not taken into account by BOUML itself.

Previous : Project synchro

Next : Project files

463

Project files
A project is saved in an own directory through several files, all of them are text files, this may help you to do
some searches or changes directly in the files (after a backup !), or of course to use a software configuration
management. The files are :

<project name>.prj : contains the top level package and project level data, for instance the generation
directories.

<number> : contains the data of a package (an uml package, not a java package !) and its sub-elements,
the package's name is the second saved data, after a format indication. The number is the package's
identifier (see Multi users considerations).

<number>.diagram : contains a diagram definition. For time and memory save reason, BOUML does not
load a diagram until it is edited. The number is the diagram's identifier (see Multi users considerations).

<number>.bodies : contains the C++ and Java bodies of all the operations of a class. For time and
memory save reason, BOUML does not load a body until it is edited. The number is the class's identifier
(see Multi users considerations).

generation_settings : contains the generation settings, this allows you to quickly set them after creating a
new project copying the generation_settings file of an old project.

tools : contains the plugs-outs declaration, this allows you to quickly set the tools list after creating a new
project copying the tools file of an old project.

cpp_includes : contains the C++ include & using specifications for the non defined types, used by the C++
generator and set through the C++ generation settings.

java_imports : contains the Java imports associated to the non defined types, not already used by the Java
generator and set through the Java generation settings.

idl_includes : contains the Idl imports includes to the non defined types, not already used by the Idl
generator and set through the Idl generation settings.

<user id>.session : contains the session state (opened diagrams, browser view ...), set when the project is
closed

<number>_<user id>.d : contains the new definition of a diagram until a save.

<number>_<user id>.b : contains the new definitions of a class's operations until a save.

<user_id>.lock : a directory created when you load the project, and deleted when you close the project
(see Multi users considerations).

Note : in a plug-out the supportFile operation defined on UmlBaseItem then applicable on all the browser items
returns the absolute pathname of the file memorizing the item. In general an item is saved in a file associated
to its package, the exceptions are :

the body of the operations of a class which definition contains the keyword '{$body}'. This path name is
returned when you apply supportFile on any operation of the class.

the drawing of the diagrams, this path name is returned when you apply supportFile on the diagram.

the configuration of the tools edited throw the entry 'Tools Settings' of the menu Tools is saved in the file
'tools'

the configuration of the #include and using forms associated to the external type and edited through the
last C++ tab of the 'Generation Settings' dialog is saved in the file 'cpp_includes'

the configuration of the imports forms associated to the external types and edited through the last Java
tab of the 'Generation Settings' dialog is saved in the file 'java_imports'

the configuration of the #include forms associated to the external type and edited through the last Idl tab
of the 'Generation Settings' dialog is saved in the file 'idl_includes'

Some files are created in your home directory :

.bouml : this file contains the last 10 load projects

.boumlrc : contains the environment information entered through the entry Set environment of the menu

464

Miscellaneous

.bouml_shortcuts : contains your keyboard shortcuts

Previous : Multi users considerations

Next : Troubleshootings

465

Troubleshootings
The plug-outs start but do nothing

The exchanges between BOUML and each plug-out are supported by a TCP/IP socket, the used IP
address is 127.0.0.1. When you ask BOUML to start a plug-out, it search for a free port number and
give it in argument to the called plug-out. In case you have a firewall it may be necessary to configure
it to allow BOUML and the plug-outs to use a socket.

A modification made by a plug-out is not see by the other ones

To reduce the number of exchanges with BOUML and run faster, a plug-out does not ask for BOUML
each time you want to get a value. The system classes read and memorize all the data of a given item
the first time you access to one of them (with the restrictions allowed by WITHCPP, WITHJAVA,
WITHPHP, WITHPYTHON, WITHMYSQL and WITHIDL). This is transparent for you until two plug-
outs access to the same data, when one plug-out modify a value already read by the other, the second
plug-out does not see the new value until it unload (an operation defined on UmlBaseItem) the object,
then ask for the value.

A class is defined with operations, attributes ... but the C++/Java/Idl/Php/Python/MySQL generator
doesn't generate it

The class doesn't have an associated artifact, or the class/artifact is not defined for the language.
Note that a default definition (set through the generation settings) may be done at the creation for
each language if you ask for it through the Languages menu

I cannot edit a browser item, the edit menu entry or button does not appear :

you do not have the write permission for the associated files or the item is a system item supporting
the plug-out API. It is also not possible to edit/delete a class when an other item is already edited.

After editing a description or other part the font is modified or several characters are replaced by a
space

During the edition the characters encoded with a 16 bits unicode character set, but out of the editions
the characters are saved on only 8 bits. When you use non ISO_8859-1 (latin1) characters you must
specify how to do the conversion by setting a character set through the environment dialog.

Examples of character sets (the list depends on the release of Qt) :

ISO_8859-1 (latin1) for English, French, Italien, German ...

ISO_8859-7 for Greek

KOI8-R or KOI8-RU or CP_1251 to allow Cyrillic

JIS7 for Japan

GB2312, GBK or GB18030 for Chinese

The specified encoding is used for :

the description of every elements,

the user properties and associate values of every elements,

the stereotype of every elements,

the definition of the artifacts, classes, operations, attributes, relations and extra members,

the state action behavior

the state entry / exit / do behavior

466

the transition trigger / guard / do behavior

the attribute's value in an object diagram

the notes and text in the diagrams

It is not used else where, for instance you can't use non ISO_8859-1 characters to name the elements
or in a message of a sequence or collaboration diagram.

The specified encoding is followed in the project's files and for the exchanges with the plug-out, this
means for instance that Cyrillic characters may be used in the comments and are generated
unchanged by the code generators.

Previous : Project files

Next : GNU public license

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the
GNU General Public License is intended to guarantee your freedom to share and change free software--to make
sure the software is free for all its users. This General Public License applies to most of the Free Software

Foundation's software and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you
to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of
the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source code.
And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you
legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no
warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any problems introduced by others will not
reflect on the original authors' reputations.

467

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The "Program", below, refers to
any such program or work, and a "work based on the Program" means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter, translation is included without
limitation in

the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its
scope. The act of running the Program is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the date
of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from
the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of
this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when started
running for such interactive use in the most ordinary way, to print or display an announcement including an
appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions, and telling the user how to view
a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to print an announcement.)

468

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived
from the Program, and can be reasonably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the Program, the distribution of
the whole must be on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more
than your cost of physically performing source distribution, a complete machine-readable copy of the
corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This
alternative is allowed only for noncommercial distribution and only if you received the program in object code
or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on)
of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you

469

permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot

distribute so as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies directly or
indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of
the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in
or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the
body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and "any later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Program does
not specify a version number of this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are
different, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will

470

be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM
AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Previous : Troubleshootings

471

